Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139421
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
Reference:
1 . Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus Journal of Neuroscience 31(32):11733-11743 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell; Hippocampus CA3 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I L high threshold; I A; I K; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Synchronization; Therapeutics; Pathophysiology; Schizophrenia; Information transfer; Brain Rhythms;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [samn at neurosim.downstate.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; Hippocampus CA3 basket cell; GabaA; NMDA; Glutamate; I L high threshold; I A; I K; I K,Ca; Gaba; Glutamate;
/
hpcdemo
readme.html
CA1ih.mod *
CA1ika.mod *
CA1ikdr.mod *
CA1ina.mod *
caolmw.mod *
capr.mod *
icaolmw.mod *
icapr.mod *
iholmkop.mod *
iholmw.mod *
ihpyrkop.mod *
kahppr.mod *
kaolmkop.mod *
kapyrkop.mod *
kcaolmw.mod *
kcpr.mod *
kdrbwb.mod *
kdrolmkop.mod *
kdrpr.mod *
kdrpyrkop.mod *
misc.mod *
MyExp2Syn.mod *
MyExp2SynAlpha.mod *
MyExp2SynBB.mod *
MyExp2SynNMDA.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
nafolmkop.mod *
nafpr.mod *
nafpyrkop.mod *
stats.mod
vecst.mod *
wrap.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.hoc *
geom.py *
grvec.hoc *
init.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.py
network.py *
nqs.hoc *
nqs_utils.hoc *
nrnoc.hoc *
params.py
pyinit.py *
run.py
screenshot.png
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
// $Id: nrnoc.hoc,v 1.74 2007/11/20 07:51:52 billl Exp $

proc nrnoc () {}

// Users should not edit nrnoc.hoc or default.hoc.  Any local 
// changes to these files should be made in local.hoc.

// key '*&*' is picked up by to indicate command for emacs
proc elisp () { printf("*&* %s\n",$s1) }
// if (not exists(simname)) { strdef simname, output_file, datestr, comment }

// Simctrl.hoc will automatically load stdgraph.hoc which automatically
// loads stdrun.hoc
strdef temp_string_, user_string_  // needed for simctrl
/* Global variable default values.  NOTE that stdrun.hoc, stdgraph.hoc
and simctrl.hoc all contain variable definitions and thus default.hoc
should be loaded after these files */
load_file("default.hoc")      /* Load default.hoc */

/* Allows arrays of strings */
objref hoc_obj_[2]
load_file("stdgui.hoc") // don't want to encounter other String tempate defs
load_file("simctrl.hoc")

proc run () {
  running_ = 1
  stdinit()
  continueRun(tstop)
  finish()
}

proc continueRun () { local rt, rtstart, ts
  if (numarg()==1) ts=$1 else ts=t+1e3
  realtime = 0  rt = screen_update_invl  rtstart = startsw()
  eventcount=0
  eventslow=1
  stoprun = 0
  if (using_cvode_) {
    if (cvode.use_local_dt || (cvode.current_method()%10) == 0) {
      cvode.solve(ts)
      flushPlot()
      realtime = startsw() - rtstart
      return
    }
  } else {
    ts -= dt/2
  }
  while (t<ts && stoprun==0) {
    step()
    realtime = startsw() - rtstart
    if (realtime >= rt) {
      //                        if (!stdrun_quiet) fastflushPlot()
      screen_update()
      //really compute for at least screen_update_invl
      realtime = startsw() - rtstart
      rt = realtime + screen_update_invl
    }
  }
  if (using_cvode_ && stoprun == 0) { // handle the "tstop" event
    step() // so all recordings take place at tstop
  }
  flushPlot()
  realtime = startsw() - rtstart
}

proc stdinit() {
        cvode_simgraph()
        realtime = 0
        setdt()
        init()
        initPlot()
}

proc init () {
  cvode_simgraph()
  initMech()
  initMisc1()

  // Initialize state vars then calculate currents
  // If user hand-set v in initMisc1() then v_init should be > 1000,
  // else all compartments will be set to v_init
  if (v_init < 1000) {
    finitialize(v_init)
  } else {
    finitialize()
  }

  // Set ca pump and leak channel for steady state
  setMemb()

  initMisc2()
  if (cvode_active()) cvode.re_init() else fcurrent()
  frecord_init()
}

// Initialization of mechanism variables
// NOTE: if any changes are made to the NEURON block of any local mod
// file, the user must add the necessary inits to initMisc1()
proc initMech () { 
  forall {
    if ((!ismembrane("pas")) && (!ismembrane("Passive"))) { 
      // Allow for either pas or Passive mod file usage
      // errorMsg("passive not inserted") 
    }

    if (ismembrane("na_ion")) { 
      nai = na_init
      nai0_na_ion = na_init
    }
    
    if (ismembrane("k_ion")) {
      ki = k_init
      ki0_k_ion = k_init
    }
    
    if (ismembrane("ca_ion")) { 
      cai = ca_init
      cai0_ca_ion = ca_init
    }
  }
}

//* setMemb complex -- multiple names for passive mech
//** declarations
iterator scase() { local i
  for i = 1, numarg() { temp_string_ = $si iterator_statement }}
objref paslist,pasvars[3],XO
double pasvals[2],x[1]
paslist = new List()
for ii=0,2 pasvars[ii]= new String()
for scase("fastpas","pas","Pass","Passive") paslist.append(new String(temp_string_))

//** getval(),setval() -- return/set the hoc value of a string
func retval () { return getval($s1) }
func getval () { 
  sprint(temp_string2_,"x=%s",$s1)
  execute(temp_string2_)
  return x
}
proc setval () { 
  sprint(temp_string2_,"%s=%g",$s1,$2)
  execute(temp_string2_)
}

//** findpas()
// assumes that we are starting in a live section since looks for pass mech there
qx_=0
proc findpas () {
  for ii=0,paslist.count-1 {
    XO=paslist.object(ii)
    if (ismembrane(XO.s)) {
      // print XO.s,"found"
      pasvars[2].s=XO.s
      sprint(pasvars[0].s,"g_%s(qx_)",XO.s)
      for scase("e","erev","XXXX") {  // look for the proper prefix
        sprint(temp_string_,"%s_%s",temp_string_,XO.s)
        if (name_declared(temp_string_)==1) break
      }
      if (name_declared(temp_string_)==0) { // not found
        printf("SetMemb() in nrnoc.hoc: Can't find proper 'erev' prefix for %s\n",XO.s)
      } else {
        sprint(pasvars[1].s,"%s(qx_)",temp_string_)
      }
    }
  }
}

proc setMemb () {
  if (!secp()) return
  findpas() // assume that passive name is the same in all sections
  forall for (qx_,0) {  // will eventually want 'for (x)' to handle all the segments
    if (ismembrane(pasvars[2].s)) {
        for ii=0,1 pasvals[ii]=getval(pasvars[ii].s)
        setmemb2()
        for ii=0,1 setval(pasvars[ii].s,pasvals[ii])
    }
  }
}

// secp() determine whether any sections exist
func secp () { local n
  n=0
  forall n+=1
  if (n>0) return 1 else return 0
}

func setother () {return 0} // callback stub
proc setmemb2 () { local iSum, ii, epas, gpas
  if (!secp()) return
  gpas=pasvals[0] epas=pasvals[1]
  // Setup steady state voltage using leak channel
  iSum = 0.0
  if (ismembrane("na_ion")) { iSum += ina(qx_) }
  if (ismembrane("k_ion"))  { iSum += ik(qx_)  }
  if (ismembrane("ca_ion")) { iSum += ica(qx_) }
  iSum += setother()

  if (iSum == 0) {        // Passive cmp so set e_pas = v
    epas = v
  } else {
    if (gpas > 0) {    // Assume g set by user, calc e
      epas = v + iSum/gpas

    } else {            // Assume e set by user, calc g
      if (epas != v) {
        gpas = iSum/(epas - v)
      } else { gpas=0 }
    }
    if (gpas < 0) errorMsg("bad g", gpas)
    if (epas < -100 || epas > 0) {
      printf(".")
      // printf("%s erev: %g %g %g\n",secname(),e_pas,ina,ik)
    }
  }
  pasvals[0]=gpas pasvals[1]=epas
}

proc finish () {
  /* Called following completion of continueRun() */

finishMisc()

if (graph_flag == 1) {
  if (iv_flag == 1) {
    flushPlot()
    doEvents()
  } else {
    graphmode(-1)
    plt(-1)
  }
}

if (print_flag == 1) {
  wopen("")
}
}

/*------------------------------------------------------------
User definable GRAPHICS and PRINTING routines
------------------------------------------------------------*/

proc outputData() {
  // Default procedure - if outputData() doesn't exist in the run file

  if (graph_flag == 1) {
    if (iv_flag == 1) {
      Plot()
      rt = stopsw()
      if (rt > realtime) {
        realtime = rt
        fastflushPlot()
        doNotify()
        if (realtime == 2 && eventcount > 50) {
          eventslow = int(eventcount/50) + 1
        }
        eventcount = 0
      }else{
        eventcount = eventcount + 1
        if ((eventcount%eventslow) == 0) {
          doEvents()
        }
      }

    } else {
      graph(t)
    }
  }

  if (print_flag == 1) { 
    if (t%printStep <= printStep) { printOut() }
  }
}

proc printOut() {
  /* Default procedure - if printOut() doesn't exist in the run file */
}

proc initGraph() {
  /* Default procedure - if initGraph() doesn't exist in the run file */

graph()
}

proc initPrint() {
  /* Default procedure - if initPrint() doesn't exist in the run file */

wopen(output_file)
}

/*------------------------------------------------------------
User definable BATCH RUN routines
------------------------------------------------------------*/

proc nextrun() {
  // Called from finishmisc() following completion of batch in an autorun
  wopen("")   
  runnum = runnum + 1
  sprint(output_file,"data/b%s.%02d", datestr, runnum)
}                       

// commands for emacs
proc update_runnum() { 
  runnum = $1
  sprint(output_file,"data/%s.%02d", datestr, runnum)
  print "^&^ (progn (sim-index-revert)(setq sim-runnum ",runnum,"))" }
proc nrn_write_index() { printf("&INDEX& %s\n",$s1) }
proc nrn_update () { elisp("nrn-update") }
proc nrn_message () { printf("!&! %s\n",$s1) } 

/*------------------------------------------------------------
User definable INITIALIZATION and FINISH routines
------------------------------------------------------------*/

// Default procedure - if initMisc1() doesn't exist in the run file 
// Initializations performed prior to finitialize() 
// This should contain point process inits and inits for any changes 
//        made to the NEURON block of any local mod file 
proc initMisc1() { }

// Default procedure - if initMisc2() doesn't exist in the run file 
// Initializations performed after finitialize() 
proc initMisc2() { }

// Default procedure - if finishMisc() doesn't exist in the run file 
proc finishMisc() { }

/*------------------------------------------------------------
Miscellaneous routines
------------------------------------------------------------*/

proc errorMsg() {
  /* Print warning, assumes arg1 is string and arg2 if present is a
  variable value */

sectionname(section)

if (numarg() == 0) {
  printf("ERROR in errorMsg(): Needs at least 1 argument.\n")
} else if (numarg() == 1) {
  printf("ERROR: %s in section %s.\n", $s1, section)
} else {
  printf("ERROR: %s in section %s (var=%g).\n", $s1, section, $2)
}
}

proc clear() {
  /* Clear non-interviews plot window */
plt(-3)
}

func mod() { local x, y
  /* Mod function for non-integers */

x=$1
y=$2

return (x/y - int(x/y))
}

proc whatSection() { print secname() }

proc print_pp_location() { local x //arg1 must be a point process
   x = $o1.get_loc()
   sectionname(temp_string_)
   printf("%s located at %s(%g)\n", $o1, temp_string_, x)
   pop_section()
}

//* set method with method()
proc method () { local prc
  if (numarg()==0) {
    if (cvode_active() && cvode_local()) { printf("\tlocal atol=%g\n",cvode.atol)
    } else if (cvode_active()) { printf("\tglobal atol=%g\n",cvode.atol)
    } else if (secondorder==2) { printf("\tCrank-Nicholson dt=%g\n",dt)
    } else if (secondorder==0) { printf("\timplicit dt=%g\n",dt)
    } else { printf("\tMethod unrecognized\n") }
    return
  }
  if (numarg()==2) prc = $2 else prc=0
  finitialize()
  if (strcmp($s1,"global")==0) {
    cvode_active(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"local")==0) {
    cvode_local(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"implicit")==0) {
    secondorder=0
    cvode_active(1)
    cvode_active(0)
    if (prc) dt=prc
  } else if (strcmp($s1,"CN")==0) {
    secondorder=2
    cvode_active(1) // this turns off local
    cvode_active(0)
    if (prc) dt=prc
  } else {
    printf("Integration method %s not recognized\n",$s1)
  }
}

//* Load local modifications to nrnoc.hoc and default.hoc
load_file("local.hoc")

if (xwindows && graph_flag) { nrnmainmenu() } // pwman_place(50,50)

print "Init complete.\n"

Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus Journal of Neuroscience 31(32):11733-11743[PubMed]

References and models cited by this paper

References and models that cite this paper

Achim AM, Bertrand MC, Sutton H, Montoya A, Czechowska Y, Malla AK, Joober R, Pruessner JC, L (2007) Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry 64:999-1014 [PubMed]

Benes FM, Sorensen I, Bird ED (1991) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 17:597-608 [PubMed]

Bleuler E (1911) Dementia Praecox oder Gruppe der Schizophrenien Handbuch der Psychiatrie, Aschaffenburg G, ed.

Borgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509-38 [PubMed]

Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47-60 [PubMed]

Bresink I, Danysz W, Parsons CG, Mutschler E (1995) Different binding affinities of NMDA receptor channel blockers in various brain regions--indication of NMDA receptor heterogeneity. Neuropharmacology 34:533-40 [PubMed]

Bubeníkova-Valesova V, Horacek J, Vrajova M, Höschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32:1014-23 [PubMed]

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, K (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626-8 [PubMed]

Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663-7 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Cobb SR, Halasy K, Vida I, Nyiri G, Tamas G, Buhl EH, Somogyi P (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79:629-48 [PubMed]

Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327-35 [PubMed]

Cutsuridis V, Cobb S, Graham BP (2009) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423-46 [Journal] [PubMed]

   Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009) [Model]

Dean B, Scarr E, Bradbury R, Copolov D (1999) Decreased hippocampal (CA3) NMDA receptors in schizophrenia. Synapse 32:67-9

Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [PubMed]

Ehrlichman RS, Gandal MJ, Maxwell CR, Lazarewicz MT, Finkel LH, Contreras D, Turetsky BI, Sie (2009) N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia. Neuroscience 158:705-12 [PubMed]

Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309-16 [PubMed]

Gourevitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97:2533-43 [PubMed]

Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12:1491-3 [PubMed]

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86:1698-702 [PubMed]

Greene R (2001) Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11:569-77 [PubMed]

Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE (2005) Microcircuits in action--from CPGs to neocortex. Trends Neurosci 28:525-33 [PubMed]

Hajos N, Freund TF, Mody I (2002) Comparison of single NMDA receptor channels recorded on hippocampal principal cells and oriens-alveus interneurons projecting to stratum lacunosum-moleculare (O-LM cells). Acta Biol Hung 53:465-72 [PubMed]

Hangya B, Borhegyi Z, Szilagyi N, Freund TF, Varga V (2009) GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci 29:8094-102 [PubMed]

Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11:520-8 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hines ML, Davison AP, Muller E (2009) NEURON and Python Frontiers in Neuroinformatics 3:1 [Journal] [PubMed]

   NEURON + Python (Hines et al. 2009) [Model]

Holthausen EA, Wiersma D, Sitskoorn MM, Dingemans PM, Schene AH, van den Bosch RJ (2003) Long-term memory deficits in schizophrenia: primary or secondary dysfunction? Neuropsychology 17:539-47 [PubMed]

Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496-500 [PubMed]

Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233-45 [PubMed]

Hong LE, Summerfelt A, Buchanan RW, O'Donnell P, Thaker GK, Weiler MA, Lahti AC (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632-40 [PubMed]

Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467-72 [PubMed]

Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178-82 [PubMed]

Jessen F, Scheef L, Germeshausen L, Tawo Y, Kockler M, Kuhn KU, Maier W, Schild HH, Heun R (2003) Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry 160:1305-12 [PubMed]

Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8:e1000403 [PubMed]

Kolomeets NS, Orlovskaya DD, Uranova NA (2007) Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 61:615-21 [PubMed]

Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ (2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22:1452-64 [PubMed]

Lisman J, Buzsaki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34:974-80 [PubMed]

Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31:234-42 [PubMed]

Lytton WW (2006) Neural Query System: Data-mining from within the NEURON simulator. Neuroinformatics 4:163-76 [Journal] [PubMed]

   Neural Query System NQS Data-Mining From Within the NEURON Simulator (Lytton 2006) [Model]

Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9:626-37 [Journal] [PubMed]

Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059-79 [Journal] [PubMed]

Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141-50 [PubMed]

Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301-7 [PubMed]

Narr KL, Thompson PM, Szeszko P, Robinson D, Jang S, Woods RP, Kim S, Hayashi KM, Asunction D (2004) Regional specificity of hippocampal volume reductions in first-episode schizophrenia. Neuroimage 21:1563-75 [PubMed]

Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney J (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106-18 [PubMed]

Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci. 30(1):69-84 [Journal] [PubMed]

   Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Nyi­ri G, Stephenson FA, Freund TF, Somogyi P (2003) Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience 119:347-63 [PubMed]

Olypher AV, Klement D, Fenton AA (2006) Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis. J Neurosci 26:158-68 [PubMed]

Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing

Orban G, Kiss T, Erdi P (2006) Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. J Neurophysiol 96:2889-904 [PubMed]

Orban G, Kiss T, Lengyel M, Erdi P (2001) Hippocampal rhythm generation: gamma-related theta-frequency resonance in CA3 interneurons. Biol Cybern 84:123-32 [PubMed]

Parnas J, Bovet P, Zahavi D (2002) Schizophrenic autism: clinical phenomenology and pathogenetic implications. World Psychiatry 1:131-6 [PubMed]

Reggia JA, Goodall SM, Shkuro Y, Glezer M (2001) The callosal dilemma: explaining diaschisis in the context of hemispheric rivalry via a neural network model. Neurol Res 23:465-71 [PubMed]

Sabolek H, Penley S, Bunce J, Hinman J, Chrobak J (2006) Ketamine alters synchrony throughout the hippocampal formation Society for Neuroscience Abstract 751.12-AA3

Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541-51 [PubMed]

Stacey WC, Lazarewicz MT, Litt B (2009) Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 102:2342-57 [Journal] [PubMed]

   High frequency oscillations in a hippocampal computational model (Stacey et al. 2009) [Model]

Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13:163-8 [PubMed]

Suzuki Y, Jodo E, Takeuchi S, Niwa S, Kayama Y (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience 114:769-79 [PubMed]

Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK, Lencz T, Bates J, (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 160:2190-7 [PubMed]

Tamminga CA, Stan AD, Wagner AD (2010) The hippocampal formation in schizophrenia. Am J Psychiatry 167:1178-93 [PubMed]

Tiesinga P, Sejnowski TJ (2009) Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63:727-32 [PubMed]

Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A 104:13490-5 [Journal] [PubMed]

   Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011) [Model]

Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM (2006) Perceptual grouping in disorganized schizophrenia. Psychiatry Res 145:105-17 [PubMed]

Uhlhaas PJ, Phillips WA, Schenkel LS, Silverstein SM (2006) Theory of mind and perceptual context-processing in schizophrenia. Cogn Neuropsychiatry 11:416-36

Uhlhaas PJ, Silverstein SM (2005) Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull 131:618-32 [PubMed]

Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155-68 [PubMed]

Wang XJ (2002) Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J Neurophysiol 87:889-900 [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A 97:8128-33 [PubMed]

Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315-36 [PubMed]

Zaidel DW, Esiri MM, Harrison PJ (1997) Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 154:812-8 [PubMed]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [Journal] [PubMed]

   Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014) [Model]

Chehelcheraghi M, van Leeuwen C, Steur E, Nakatani C (2017) A neural mass model of cross frequency coupling. PLoS One 12:e0173776 [Journal] [PubMed]

   A neural mass model of cross frequency coupling (Chehelcheraghi et al 2017) [Model]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK (2013) Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Front Comput Neurosci 7:144 [Journal] [PubMed]

   CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013) [Model]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]

   Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) [Model]

Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model PLoS ONE 8(10):e76285 [Journal] [PubMed]

   Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013) [Model]

Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex Neuroscience 316:344-366 [Journal] [PubMed]

   Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) [Model]

Sanjay M, Neymotin SA, Krothapalli SB (2015) Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3. Hippocampus 25:1336-50 [Journal] [PubMed]

   CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015) [Model]

Stanley DA, Talathi SS, Parekh MB, Cordiner DJ, Zhou J, Mareci TH, Ditto WL, Carney PR (2013) Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy. J Neurophysiol 110:1070-86 [Journal] [PubMed]

   Hippocampal CA3 network and circadian regulation (Stanley et al. 2013) [Model]

(84 refs)