L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139653
"... L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na+-spiking behavior as well as key dendritic active properties, including Ca2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. ... The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities. "
Reference:
1 . Hay E, Hill S, Schurmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex layer 5-6 pyramidal cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Active Dendrites; Detailed Neuronal Models;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex layer 5-6 pyramidal cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;

Hay E, Hill S, Schurmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107[PubMed]

References and models cited by this paper

References and models that cite this paper

Adams PR, Brown DA, Constanti A (1982) M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol 330:537-72 [PubMed]

Amitai Y, Friedman A, Connors BW, Gutnick MJ (1993) Regenerative activity in apical dendrites of pyramidal cells in neocortex. Cereb Cortex 3:26-38 [PubMed]

Archie KA, Mel BW (2000) A model for intradendritic computation of binocular disparity. Nat Neurosci 3:54-63 [Journal] [PubMed]

   Visual Cortex Neurons: Dendritic computations (Archie, Mel 2000) [Model]

Avery RB, Johnston D (1996) Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. J Neurosci 16:5567-82 [PubMed]

Bar Ilan L, Gidon A, Segev I (2011) Interregional synaptic competition in neurons with multiple STDP-inducing signals. J Neurophysiol 105:989-98 [PubMed]

Berger T, Senn W, Luscher HR (2003) Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90:2428-37 [PubMed]

Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur J Oper Res 181:1653-1669

Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704-10 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 5:533-8 [PubMed]

Deb K (2001) Multi-objective optimization using evolutionary algorithms xix:1-497

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II Nsga-ii Ieee Transactions On Evolutionary Computation 6:182-197

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Druckmann S, Banitt Y, Gidon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7-18 [PubMed]

Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN (2010) Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci 13:852-60 [Journal] [PubMed]

   Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010) [Model]

Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422-35 [PubMed]

Goaillard JM, Taylor AL, Schulz DJ, Marder E (2009) Functional consequences of animal-to-animal variation in circuit parameters. Nat Neurosci 12:1424-30 [PubMed]

Goldstein SS, Rall W (1974) Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14:731-57 [PubMed]

Hattox AM, Nelson SB (2007) Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 98:3330-40 [PubMed]

Hille B (1996) A K+ channel worthy of attention. Science 273:1677-1677 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Holmes WR, Rall W (1992) Estimating the electrotonic structure of neurons with compartmental models. J Neurophysiol 68:1438-52 [Journal] [PubMed]

Houweling AR, Brecht M (2008) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451:65-8 [PubMed]

Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996-1002 [Journal] [PubMed]

   Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009) [Model]

Keren N, Bar-Yehuda D, Korngreen A (2009) Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones. J Physiol 587:1413-37 [PubMed]

Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730-42 [Journal] [PubMed]

Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13:5301-11 [PubMed]

Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3 Suppl:1171-7 [PubMed]

Kole MH, Hallermann S, Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26:1677-87 [Journal] [PubMed]

   Stochastic Ih and Na-channels in pyramidal neuron dendrites (Kole et al 2006) [Model]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525 Pt 3:621-39 [PubMed]

   Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000) [Model]

Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306:332-43 [PubMed]

Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci U S A 96:14600-4 [PubMed]

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [Journal] [PubMed]

   Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009) [Model]

Larkum ME, Senn W, Luscher HR (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14:1059-70 [PubMed]

Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22:6991-7005 [PubMed]

Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338-41 [PubMed]

Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J Physiol 533:447-66 [PubMed]

Le Be JV, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17:2204-13 [PubMed]

Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895-903 [PubMed]

   CA1 pyramidal neuron: Synaptic Scaling (Magee, Cook 2000) [Model]

Magistretti J, Alonso A (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J Gen Physiol 114:491-509 [PubMed]

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363-6 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996) [Model]

Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-60 [Journal] [PubMed]

   [241 reconstructed morphologies on NeuroMorpho.Org]

Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500 ( Pt 2):409-40 [PubMed]

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-5 [PubMed]

Mel BW, Ruderman DL, Archie KA (1998) Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. J Neurosci 18:4325-34 [PubMed]

Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models PNAS 106(36):16829-16834 [Journal] [PubMed]

Meyer HS, Wimmer VC, Hemberger M, Bruno RM, de Kock CP, Frick A, Sakmann B, Helmstaedter M (2010) Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cereb Cortex 20:2287-303 [PubMed]

   [82 reconstructed morphologies on NeuroMorpho.Org]

Murayama M, Larkum ME (2009) Enhanced dendritic activity in awake rats. Proc Natl Acad Sci U S A 106:20482-6 [PubMed]

Murayama M, Perez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137-41 [PubMed]

Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206-14 [Journal] [PubMed]

   Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007) [Model]

Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535-7 [PubMed]

Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854-63 [PubMed]

Poirazi P, Brannon T, Mel BW (2003a) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977-987 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

Polsky A, Mel B, Schiller J (2009) Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J Neurosci 29:11891-903 [Journal] [PubMed]

   NMDA spikes in basal dendrites of L5 pyramidal neurons (Polsky et al. 2009) [Model]

Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621-7 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

RALL W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491-527 [PubMed]

Randall AD, Tsien RW (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36:879-93 [PubMed]

Rapp M, Yarom Y, Segev I (1996) Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc Natl Acad Sci U S A 93:11985-90 [PubMed]

Remme MW, Lengyel M, Gutkin BS (2009) The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Comput Biol 5:e1000493-16 [PubMed]

Remy S, Csicsvari J, Beck H (2009) Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron 61:906-16 [PubMed]

Rettig J, Wunder F, Stocker M, Lichtinghagen R, Mastiaux F, Beckh S, Kues W, Pedarzani P, Sch (1992) Characterization of a Shaw-related potassium channel family in rat brain. EMBO J 11:2473-86 [PubMed]

Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13:4609-21 [PubMed]

Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143-54 [Journal] [PubMed]

   Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003) [Model]

Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285-9 [PubMed]

Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505 ( Pt 3):605-16 [PubMed]

Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006-20 [Journal] [PubMed]

   Action potential initiation in the olfactory mitral cell (Shen et al 1999) [Model]

Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505 ( Pt 3):617-32 [PubMed]

Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501-10 [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep: attenuation in dendrites (Stuart, Spruston 1998) [Model]

Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63-71 [PubMed]

Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72 [PubMed]

Toledo-Rodriguez M, Blumenfeld B, Wu C, Luo J, Attali B, Goodman P, Markram H (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14:1310-27 [PubMed]

Tsay D, Dudman JT, Siegelbaum SA (2007) HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56:1076-89 [PubMed]

Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241-51

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7:149-71 [Journal] [PubMed]

Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [Journal] [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]
   Dendritica (Vetter et al 2001) [Model]

Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J Neurophysiol 83:3177-82 [Journal] [PubMed]

Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J Physiol 526 Pt 3:571-87 [PubMed]

Zitzler E, Kunzli S (2004) Indicator-based selection in multiobjective search Parallel Problem Solving From Nature-ppsn Viii 3242:832-842

Almog M, Korngreen A (2014) A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons J Neurosci 34(1):182-196 [Journal]

   Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014) [Model]

Anwar H, Roome CJ, Nedelescu H, Chen W, Kuhn B, De Schutter E (2014) Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models Frontiers in Cellular Neuroscience 8(168):1-14 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Calcium dynamics depend on dendritic diameters (Anwar et al. 2014) [Model]

Bahl A, Stemmler MB, Herz AV, Roth A (2012) Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J Neurosci Methods 210:22-34 [Journal] [PubMed]

   A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012) [Model]

Balbi P, Martinoia S, Massobrio P (2015) Axon-somatic back-propagation in detailed models of spinal alpha motoneurons Front. Comput. Neurosci. 9:15 [Journal]

   Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015) [Model]

Bird AD, Cuntz H (2016) Optimal Current Transfer in Dendrites. PLoS Comput Biol 12:e1004897 [Journal] [PubMed]

Cohen MX (2014) Fluctuations in oscillation frequency control spike timing and coordinate neural networks Journal of Neuroscience 34(27):8988-8998 [Journal]

   Input strength and time-varying oscillation peak frequency (Cohen MX 2014) [Model]

Friedrich P, Vella M, Gulyas AI, Freund TF, Kali S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63 [Journal] [PubMed]

   Software (called Optimizer) for fitting neuronal models (Friedrich et al. 2014) [Model]

Grossman N, Simiaki V, Martinet C, Toumazou C, Schultz SR, Nikolic K (2012) The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials. J Comput Neurosci [Journal] [PubMed]

Hass J, Hertag L, Durstewitz D (2016) A detailed data-driven network model of prefrontal cortex reproduces key features of in vivo activity PLoS Comput Biol 12(5):e1004930 [Journal] [PubMed]

   A detailed data-driven network model of prefrontal cortex (Hass et al 2016) [Model]

Hay E, Schurmann F, Markram H, Segev I (2013) Preserving Axo-somatic Spiking Features Despite Diverse Dendritic Morphology. J Neurophysiol 109(12):2972-81 [Journal] [PubMed]

   [4 reconstructed morphologies on NeuroMorpho.Org]
   Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) [Model]

Hay E, Segev I (2015) Dendritic excitability and gain control in recurrent cortical microcircuits Cerebral Cortex 25(10):3561-3571 [Journal] [PubMed]

   Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015) [Model]

Maki-Marttunen T, Halnes G, Devor A, Witoelar A, Bettella F, Djurovic S, Wang Y, Einevoll GT, (2016) Functional Effects of Schizophrenia-Linked Genetic Variants on Intrinsic Single-Neuron Excitability: A Modeling Study. Biol Psychiatry Cogn Neurosci Neuroimaging 1:49-59 [Journal] [PubMed]

   Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016) [Model]

Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, et al (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell 163:456-92 [Journal] [PubMed]

Ness TV, Remme MW, Einevoll GT (2016) Active subthreshold dendritic conductances shape the local field potential. J Physiol 594:3809-25 [Journal] [PubMed]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]

   Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) [Model]

Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex Neuroscience 316:344-366 [Journal] [PubMed]

   Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) [Model]

Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11:e1004090 [Journal] [PubMed]

   Layer 5 Pyramidal Neuron (Shai et al., 2015) [Model]

Wilmes KA, Sprekeler H, Schreiber S (2016) Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS Comput Biol 12:e1004768 [Journal] [PubMed]

   Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016) [Model]

(97 refs)