Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): de Souza, Fabio M S [fabios at base.com.br];
Search NeuronDB for information about:  Cerebellum interneuron granule cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
/******Cerebellar Cortex with Gap Junctions between Golgi cells******/

Developers:    Fabio M Simoes de Souza & E De Schutter

Work Progress: Jan 2010 - Dec 2010

Developed At: Okinawa Institute of Science and Technology
               Computational Neuroscience Unit Okinawa - Japan
	       
Model Published in: 

             Simoes de Souza FM and De Schutter E (2011) Robustness
             effect of gap junctions between Golgi cells on cerebellar
             cortex oscillations.  Neural Systems & Circuits 1:7.

Abstract

Background: Previous one-dimensional network modeling of the
cerebellar granular layer has been successfully linked with a range of
cerebellar cortex oscillations observed in vivo. However, the recent
discovery of gap junctions between Golgi cells (GoCs), which may cause
oscillations by themselves, has raised the question of how
gap-junction coupling affects GoC and granular-layer oscillations. To
investigate this question, we developed a novel two-dimensional
computational model of the GoC-granule cell (GC) circuit with and
without gap junctions between GoCs.Results: Isolated GoCs coupled by
gap junctions had a strong tendency to generate spontaneous
oscillations without affecting their mean firing frequencies in
response to distributed mossy fiber input. Conversely, when GoCs were
synaptically connected in the granular layer, gap junctions increased
the power of the oscillations, but the oscillations were primarily
driven by the synaptic feedback loop between GoCs and GCs, and the gap
junctions did not change oscillation frequency or the mean firing rate
of either GoCs or GCs.Conclusion: Our modeling results suggest that
gap junctions between GoCs increase the robustness of cerebellar
cortex oscillations that are primarily driven by the feedback loop
between GoCs and GCs. The robustness effect of gap junctions on
synaptically driven oscillations observed in our model may be a
general mechanism, also present in other regions of the brain.

Usage instructions:

Auto-launch from ModelDB or download and extract the archive.  Then
under:

----
MSWIN

run mknrndll, cd to the archive and make the nrnmech.dll.  Then double
click on the mosinit.hoc file.

----
MAC OS X

Drag and drop the network folder onto the mknrndll icon.
Drag and drop the mosinit.hoc file onto the nrngui icon.

----
Linux/Unix

Change directory to the network folder. run nrnivmodl. Then type
nrngui mosinit.hoc

----

Uncomment the GJ flag on mosinit.hoc to select a network with or
without GJ between GoCs.
Once the simulation is started it will produce a result similar to
figure 9 from Simoes de Souza and De Schutter 2011.

Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19

References and models cited by this paper

References and models that cite this paper

Expression of pannexin1 in the CNS of adult mouse: cellular localization and effect of 4-aminopyridine-induced seizures. Neuroscience 141:167-78 [PubMed]

Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G (2000) Expression of connexin36 in the adult and developing rat brain. Brain Res 865:121-38 [PubMed]

Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron 41:495-511 [PubMed]

Berends M, Maex R, De_Schutter E (2004) A detailed three dimensional model of the cerebellar granule cell layer Neurocomputing 58:587-592

Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334-46 [PubMed]

Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497 ( Pt 3):753-9 [PubMed]

Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856-60 [PubMed]

Chan-Palay V, Palay SL (1971) The synapse en marron between golgi II neurons and mossy fibers in the rat's cerebellar cortex. Z Anat Entwicklungsgesch 133:274-87 [PubMed]

Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudò G (2000) Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev 32:72-85 [PubMed]

Courtemanche R, Lamarre Y (2005) Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93:2039-52 [PubMed]

Courtemanche R, Pellerin JP, Lamarre Y (2002) Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol 88:771-82 [PubMed]

D'Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805-15 [PubMed]

D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci 21:759-70 [PubMed]

   Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001) [Model]

D`Angelo E, De_filippi G, Rossi P, Taglietti V (1995) Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors J Physiol 484(2):397-413

De Schutter E (2002) Cerebellar cortex: computation by extrasynaptic inhibition? Curr Biol 12:R363-5 [PubMed]

De Zeeuw CI, Hoebeek FE, Schonewille M (2008) Causes and consequences of oscillations in the cerebellar cortex. Neuron 58:655-8 [PubMed]

Dieudonne S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510 ( Pt 3):845-66 [PubMed]

Dieudonne S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837-48 [PubMed]

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D`Angelo E (2009) Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells J Neurophysiol 101(2):519-32 [Journal] [PubMed]

   Multicompartmental cerebellar granule cell model (Diwakar et al. 2009) [Model]

Dugue GP, Brunel N, Hakim V, Schwartz E, Chat M, Levesque M, Courtemanche R, Lena C, Dieudonn (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61:126-39 [PubMed]

Eccles JC, Faber DS, Murphy JT, Sabah NH, Taborikova H (1971) Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Exp Brain Res 13:15-35

Eccles JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine

Ekerot CF, Jorntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303-10 [PubMed]

Forti L, Cesana E, Mapelli J, D'Angelo E (2006) Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol 574:711-29 [PubMed]

Galliano E, Mazzarello P, D'Angelo E (2010) Discovery and rediscoveries of Golgi cells. J Physiol 588:3639-55 [PubMed]

Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchetchik D,et al (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55:449-63 [Journal] [PubMed]

Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598-604 [Journal] [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci 29:5276-86 [PubMed]

Isope P, Dieudonne S, Barbour B (2002) Temporal organization of activity in the cerebellar cortex: a manifesto for synchrony. Ann N Y Acad Sci 978:164-74 [PubMed]

Ito M (1984) The Cerebellum And Neural Control

Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272-303 [PubMed]

Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann N Y Acad Sci 978:302-17 [PubMed]

Jakab RL, Hamori J (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl) 179:81-8 [PubMed]

Kanichay RT, Silver RA (2008) Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J Neurosci 28:8955-67 [PubMed]

Koekkoek SK, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJ, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736-9 [PubMed]

Kopell N, Ermentrout B (2004) Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci U S A 101:15482-7 [PubMed]

Korbo L, Andersen BB, Ladefoged O, Moller A (1993) Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res 609:262-8 [PubMed]

Lau T, Gage GJ, Berke JD, Zochowski M (2010) Local dynamics of gap-junction-coupled interneuron networks. Phys Biol 7:16015-86 [PubMed]

Lewis TJ, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283-309 [Journal] [PubMed]

Lisman J, Buzsaki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34:974-80 [PubMed]

Llinas RR, Walton KD, Lang EJ (2004) Cerebellum The Synaptic Organization of the Brain (5th ed), Shepherd GM, ed.

Lu H, Hartmann MJ, Bower JM (2005) Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. J Neurophysiol 94:1849-60 [Journal]

Maex R, De Schutter E (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521-37 [Journal] [PubMed]

   Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998) [Model]

Maex R, De Schutter E (2003) Resonant Synchronization in Heterogeneous Networks of Inhibitory Neurons. J Neurosci 23:10503-10514 [Journal] [PubMed]

   Fast oscillations in inhibitory networks (Maex, De Schutter 2003) [Model]

Maex R, De Schutter E (2005) Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res 148:181-8 [PubMed]

Maex R, De Schutter E (2007) Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions. Eur J Neurosci 25:3347-58 [PubMed]

Maex R, Vos BP, De Schutter E (2000) Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar golgi cells. J Physiol 523 Pt 1:175-92 [PubMed]

Magistretti J, Castelli L, Forti L, D'Angelo E (2006) Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. J Physiol 573:83-106 [PubMed]

Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433-45 [PubMed]

Ostojic S, Brunel N, Hakim V (2009) Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J Comput Neurosci 26:369-92 [PubMed]

Palay SL, Chan-palay V (1974) Cerebellar Cortex Cytology And Organization :348

Palkovits M, Magyar P, Szentagothai J (1971) Quantitative histological analysis of the cerebellar cortex in the cat. 3. Structural organization of the molecular layer. Brain Res 34:1-18 [PubMed]

Pellerin JP, Lamarre Y (1997) Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol 78:3502-7 [Journal] [PubMed]

Pellionisz A, Szentagothai J (1973) Dynamic single unit simulation of a realistic cerebellar network model. Brain Res 49:83-99 [PubMed]

Pichitpornchai C, Rawson JA, Rees S (1994) Morphology of parallel fibres in the cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin. J Comp Neurol 342:206-20 [PubMed]

Ramon y Cajal S (1888) Sobre las fibras nerviosas de la capa molecular del cerebelo Rev Trimest Histol Norm Patol

Ray A, Zoidl G, Wahle P, Dermietzel R (2006) Pannexin expression in the cerebellum. Cerebellum 5:189-92 [PubMed]

Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 21:3277-90 [PubMed]

Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA (2009) Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci 29:10309-20 [PubMed]

Salenius S, Hari R (2003) Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol 13:678-84 [PubMed]

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539-50 [PubMed]

Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D`Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. Front. Cell. Neurosci. 1:2:1-12 [Journal] [PubMed]

   Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) [Model]

Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12-58 [PubMed]

Tallon-Baudry C, Bertrand O, Delpuech C, Permier J (1997) Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci 17:722-34 [PubMed]

Traub RD, Jefferys GR, Whittington MA (1999) Fast Oscillations In Cortical Circuits

Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA (2010) Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input. Neuron 67:435-451 [Journal] [PubMed]

   Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010) [Model]

Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res Mol Brain Res 141:113-20 [PubMed]

Volny-Luraghi A, Maex R, Vosdagger B, De Schutter E (2002) Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience 113:363-73 [PubMed]

Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6 [PubMed]

Vos BP, Volny-Luraghi A, De Schutter E (1999) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621-34 [PubMed]

Vranesic I, Iijima T, Ichikawa M, Matsumoto G, Knöpfel T (1994) Signal transmission in the parallel fiber-Purkinje cell system visualized by high-resolution imaging. Proc Natl Acad Sci U S A 91:13014-7 [PubMed]

De Schutter E (2014) The dangers of plug-and-play simulation using shared models. Neuroinformatics 12:227-8 [Journal] [PubMed]

(73 refs)