Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Golgi Cell HCN1 Model

COMMENT

Author:Sergio Solinas, Lia Forti, Egidio DAngelo
Data from: Santoro et al. J Neurosci. 2000
Last revised: May 2007

Published in:
             Sergio M. Solinas, Lia Forti, Elisabetta Cesana, 
             Jonathan Mapelli, Erik De Schutter and Egidio D`Angelo (2008)
             Computational reconstruction of pacemaking and intrinsic 
             electroresponsiveness in cerebellar golgi cells
             Frontiers in Cellular Neuroscience 2:2
ENDCOMMENT

NEURON {
        SUFFIX Golgi_hcn1
	NONSPECIFIC_CURRENT ih
	RANGE o_fast_inf, o_slow_inf, tau_f, tau_s, Erev
	RANGE gbar,r,g
}       
        
UNITS {
        (mA) = (milliamp)
	(mV) = (millivolt)
	(S)  = (siemens)        
}


PARAMETER {
	celsius  (degC)
	gbar = 5e-5   (S/cm2)
        Erev = -20 (mV)
	q_10 = 3

	Ehalf = -72.49 (mV)
	c = 0.11305	(/mV)
	
	rA = 0.002096 (/mV)
        rB = 0.97596  (1)
        tCf = 0.01371 (1)
        tDf = -3.368  (mV)
	tEf = 2.302585092 (/mV)
	tCs = 0.01451 (1)
        tDs = -4.056  (mV)
	tEs = 2.302585092 (/mV)
}

ASSIGNED {
	ih		(mA/cm2)
        v               (mV)
	g		(S/cm2)
	o_fast_inf
        o_slow_inf
        tau_f           (ms)
	tau_s           (ms)       
}



STATE {	o_fast o_slow }


BREAKPOINT {
	SOLVE state METHOD cnexp
	g = gbar * (o_fast + o_slow)
        ih = g * (v - Erev)
}

DERIVATIVE state {	
	rate(v)
	o_fast' = (o_fast_inf - o_fast) / tau_f
	o_slow' = (o_slow_inf - o_slow) / tau_s
}

LOCAL q

INITIAL {
	q = q_10^((celsius -33(degC)) / 10(degC))
	rate(v)
	o_fast = o_fast_inf
	o_slow = o_slow_inf

}

FUNCTION r(potential (mV))  { 	:fraction of fast component in double exponential
	UNITSOFF
	r =  rA * potential + rB
        UNITSON
}

FUNCTION tau(potential (mV),t1,t2,t3) (ms) { 
	UNITSOFF
        tau = exp(((t1 * potential) - t2)*t3)
	UNITSON
}

FUNCTION o_inf(potential (mV), Ehalf, c)  { 
	UNITSOFF
        o_inf = 1 / (1 + exp((potential - Ehalf) * c))
        UNITSON
}

FUNCTION q10(celsius (deg))  {
	UNITSOFF
        q10 = exp(1.0986 * ((celsius - 33) / 10))
        UNITSON
}

PROCEDURE rate(v (mV)) { 
	TABLE o_fast_inf, o_slow_inf, tau_f, tau_s
	DEPEND celsius FROM -100 TO 30 WITH 13000

	: r(v) is the fraction of fast component in double exponential
	o_fast_inf = r(v) * o_inf(v,Ehalf,c)
	o_slow_inf = (1 - r(v)) * o_inf(v,Ehalf,c)
			
	tau_f =  tau(v,tCf,tDf,tEf) 
	tau_s =  tau(v,tCs,tDs,tEs) 
}

Loading data, please wait...