Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Golgi Cell Model

COMMENT
        K-slow channel
   
	Author: E.DAngelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT

NEURON { 
	SUFFIX Golgi_KM 
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g
	:RANGE Aalpha_n, Kalpha_n, V0alpha_n, alpha_n, beta_n 
	:RANGE Abeta_n, Kbeta_n, V0beta_n
	:RANGE V0_ninf, B_ninf
	RANGE n, n_inf, tau_n, tcorr
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_n = 0.0033 (/ms)
	Kalpha_n = 40 (mV)
	V0alpha_n = -30 (mV)
	
	Abeta_n = 0.0033 (/ms)
	Kbeta_n = -20 (mV)
	V0beta_n = -30 (mV)
	
	V0_ninf = -35 (mV)
	B_ninf =  6 (mV)
	
	gkbar= 0.001 (mho/cm2)
	ek   (mV)
	celsius (degC) 
	Q10 = 3	(1) 
}

STATE { 
	n 
} 

ASSIGNED { 
	v (mV) 
	ik (mA/cm2) 
	n_inf 
	tau_n (ms) 
	g (mho/cm2) 
	alpha_n (/ms) 
	beta_n (/ms) 
	tcorr (1)
} 
 
INITIAL { 
	rate(v) 
	n = n_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*n 
	ik = g*(v - ek) 
	alpha_n = alp_n(v) 
	beta_n = bet_n(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	n' =(n_inf - n)/tau_n 
} 
 
FUNCTION alp_n(v(mV))(/ms) { 
	alp_n = Aalpha_n*exp((v-V0alpha_n)/Kalpha_n) 
} 
 
FUNCTION bet_n(v(mV))(/ms) { 
	bet_n = Abeta_n*exp((v-V0beta_n)/Kbeta_n) 
} 

UNITSOFF

LOCAL delta
LOCAL q10
 
PROCEDURE rate(v (mV)) {LOCAL a_n, b_n, s_n  
	TABLE n_inf, tau_n 
	DEPEND Aalpha_n, Kalpha_n, V0alpha_n, 
	       Abeta_n, Kbeta_n, V0beta_n, V0_ninf, B_ninf, celsius FROM -100 TO 30 WITH 13000 
	a_n = alp_n(v)  
	b_n = bet_n(v)

	tcorr = Q10^((celsius - 22)/10)
	s_n = tcorr*(a_n + b_n) 
	tau_n = 1/s_n
 
:  n_inf = a_n/(a_n + b_n) 
	n_inf = 1/(1+exp(-(v-V0_ninf)/B_ninf))
} 


Loading data, please wait...