Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Golgi Cell Model

COMMENT
        Na persistent channel
   
	Author: E.D Angelo, T.Nieus, A. Fontana 
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX Golgi_NaP 
	USEION na READ ena WRITE ina 
	RANGE gbar, ina, g
	:RANGE Aalpha_m, Kalpha_m, V0alpha_m, alpha_m, beta_m
	:RANGE Abeta_m, Kbeta_m, V0beta_m
	:RANGE V0_minf, B_minf
	RANGE m, m_inf, tau_m, tcorr
	:GLOBAL i
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	gbar		= 0.00019 (mho/cm2)
	Aalpha_m 	= -0.91 (/mV-ms)
	Kalpha_m 	= -5 (mV)
	V0alpha_m 	= -40 (mV)
	Abeta_m 	= 0.62 (/mV-ms)
	Kbeta_m 	= 5 (mV)
	V0beta_m 	= -40 (mV)
	V0_minf 	= -43 (mV)
	B_minf 		= 5 (mV)
	v (mV) 
	ena 	 (mV) 
	celsius  (degC) 
	Q10 = 3	(1)
} 

STATE { 
	m 
} 

ASSIGNED { 
	ina (mA/cm2) 
	m_inf 
	tau_m (ms) 
	g (mho/cm2) 
	alpha_m (/ms)
	beta_m (/ms)
	tcorr	(1)
} 
 
INITIAL { 
	rate(v) 
	m = m_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gbar*m 
	ina = g*(v - ena) 
	alpha_m = alp_m(v)
	beta_m = bet_m(v)
} 
 
DERIVATIVE states { 
	rate(v) 
	m' =(m_inf - m)/tau_m 
} 

FUNCTION alp_m(v(mV))(/ms) {
	tcorr = Q10^((celsius-30(degC))/10(degC))
	alp_m = tcorr * Aalpha_m*linoid(v-V0alpha_m, Kalpha_m) 
} 
 
FUNCTION bet_m(v(mV))(/ms) {
	tcorr = Q10^((celsius-30(degC))/10(degC))
	bet_m = tcorr * Abeta_m*linoid(v-V0beta_m, Kbeta_m) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_m, b_m 
	TABLE m_inf, tau_m 
	DEPEND Aalpha_m, Kalpha_m, V0alpha_m, 
	       Abeta_m, Kbeta_m, V0beta_m, celsius FROM -100 TO 30 WITH 13000
	a_m = alp_m(v)  
	b_m = bet_m(v) 
:	m_inf = a_m/(a_m + b_m) 
	m_inf = 1/(1+exp(-(v-V0_minf)/B_minf))
	tau_m = 5/(a_m + b_m) 
} 

FUNCTION linoid(x (mV),y (mV)) (mV) {
        if (fabs(x/y) < 1e-6) {
                linoid = y*(1 - x/y/2)
        }else{
                linoid = x/(exp(x/y) - 1)
        }
}



Loading data, please wait...