Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139883
The model allows reconstruction of evoked local field potentials as seen in the cerebellar granular layer. The approach uses a detailed model of cerebellar granule neuron to generate data traces and then uses a "ReConv" or jittered repetitive convolution technique to reproduce post-synaptic local field potentials in the granular layer. The algorithm was used to generate both in vitro and in vivo evoked LFP and reflected the changes seen during LTP and LTD, when such changes were induced in the underlying neurons by modulating release probability of synapses and sodium channel regulated intrinsic excitability of the cells.
Reference:
1 . Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control PLoS ONE 6(7):e21928
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum interneuron granule cell;
Channel(s): I K; I M; I K,Ca; I Sodium; I Calcium; I Cl, leak;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Octave;
Model Concept(s): Extracellular Fields; Evoked LFP;
Implementer(s): Diwakar, Shyam [shyam at amrita.edu];
Search NeuronDB for information about:  Cerebellum interneuron granule cell; GabaA; AMPA; NMDA; I K; I M; I K,Ca; I Sodium; I Calcium; I Cl, leak;
/
ReConv
data
readme.html
AmpaCOD.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_GABA.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
NmdaS.mod *
Pregen.mod *
ComPanel.hoc
ComPanel.hoc and 1=1
ComPanel.hoc' and 'x'='x
ComPanel.hoc' and 'x'='y
ComPanel.hoc+and+1=1
ComPanel.hoc'+and+'x'='x
ComPanel.hoc'+and+'x'='y
ComPanel.hoc2121121121212.1
Grc_Cell.hoc
mosinit.hoc
Parametri.hoc
ReConv_GrC.jpg
ReConv_invitro.jpg
ReConv_invivo.jpg
Record_vext.hoc
Start.hoc
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        KCa channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX GRC_KCA
	USEION k READ ek WRITE ik 
	USEION ca READ cai
	RANGE gkbar, ik, ica, g, alpha_c, beta_c
	RANGE Aalpha_c, Balpha_c, Kalpha_c
	RANGE Abeta_c, Bbeta_c, Kbeta_c 
	RANGE c_inf, tau_c 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
	(molar) = (1/liter)
	(mM) = (millimolar)
} 
 
PARAMETER { 
	Aalpha_c = 2.5 (/ms)
	Balpha_c = 1.5e-3 (mM)

	:Kalpha_c = -0.085 (/mV)
	Kalpha_c =  -11.765 (mV)

	Abeta_c = 1.5 (/ms)
	Bbeta_c = 0.15e-3 (mM)

	:Kbeta_c = -0.085 (/mV)
	Kbeta_c = -11.765 (mV)

	v (mV) 
	cai (mM)
	gkbar= 0.003 (mho/cm2) 
	ek = -84.69 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	c 
} 

ASSIGNED { 
	ik (mA/cm2) 
	ica (mA/cm2)

	c_inf 
	tau_c (ms) 
	g (mho/cm2) 
	alpha_c (/ms) 
	beta_c (/ms) 
} 
 
INITIAL { 
	rate(v) 
	c = c_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*c 
	ik = g*(v - ek) 
	alpha_c = alp_c(v) 
	beta_c = bet_c(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	c' =(c_inf - c)/tau_c 
} 
 
FUNCTION alp_c(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-30(degC))/10(degC))
	alp_c = Q10*Aalpha_c/(1+(Balpha_c*exp(v/Kalpha_c)/cai)) 
} 
 
FUNCTION bet_c(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-30(degC))/10(degC))
	bet_c = Q10*Abeta_c/(1+cai/(Bbeta_c*exp(v/Kbeta_c))) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_c, b_c 
	TABLE c_inf, tau_c 
	DEPEND Aalpha_c, Balpha_c, Kalpha_c, 
	       Abeta_c, Bbeta_c, Kbeta_c, celsius FROM -100 TO 30 WITH 13000 
	a_c = alp_c(v)  
	b_c = bet_c(v) 
	tau_c = 1/(a_c + b_c) 
	c_inf = a_c/(a_c + b_c) 
} 


Loading data, please wait...