Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140828
Compartmental model of a layer 2/3 pyramidal cell in the rat somatosensory cortex, exploring NMDA-dependent sensitivity to the temporal sequence of synaptic activation.
References:
1 . Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671-5 [PubMed]
2 . Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885-92 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Synaptic Integration; Direction Selectivity;
Implementer(s):
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; NMDA; Glutamate;
/
Branco_2010
mod.files
ar.mod
ca.mod *
cad.mod *
caL3d.mod *
CaT.mod *
h.mod *
HH2.mod *
inwardrect.mod
kca.mod *
kir.mod *
km.mod *
kv.mod *
na.mod *
NMDA_Mg_T.mod *
release_BMK.mod *
                            
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)

}

PARAMETER {
    v (mV)
    ehd  (mV)        
    celsius (degC)
    ghdbar=.0001 (mho/cm2)
    vhalfl=-81   (mV)
    kl=-8
    vhalft=-75   (mV)
    a0t=0.011      (/ms)
    zetat=2.2    (1)
    gmt=.4   (1)
    q10=4.5
    qtl=1
}


NEURON {
    SUFFIX hd
    NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
    i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
    rate(v)
    l=linf
}


BREAKPOINT {
    SOLVE states METHOD cnexp
    ghd = ghdbar*l
    i = ghd*(v-ehd)

}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1 + exp(-(v-vhalfl)/kl))
:       linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}






Loading data, please wait...