Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140828
Compartmental model of a layer 2/3 pyramidal cell in the rat somatosensory cortex, exploring NMDA-dependent sensitivity to the temporal sequence of synaptic activation.
References:
1 . Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671-5 [PubMed]
2 . Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885-92 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Synaptic Integration; Direction Selectivity;
Implementer(s):
Search NeuronDB for information about:  Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; NMDA; Glutamate;
/
Branco_2010
mod.files
ar.mod
ca.mod *
cad.mod *
caL3d.mod *
CaT.mod *
h.mod *
HH2.mod *
inwardrect.mod
kca.mod *
kir.mod *
km.mod *
kv.mod *
na.mod *
NMDA_Mg_T.mod *
release_BMK.mod *
                            
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
: Modified Oct 96 for compatibility with Windows: trap low values of arguments
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub
	RANGE m_inf, h_inf, n_inf
	RANGE tau_m, tau_h, tau_n
	RANGE m_exp, h_exp, n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar  = .003  (mho/cm2)
	gkbar   = .005  (mho/cm2)

	ena     = 50    (mV)
	ek      = -90   (mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
	vtraub  = -63   (mV)
}

STATE {
	m h n
}

ASSIGNED {
	ina     (mA/cm2)
	ik      (mA/cm2)
	il      (mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ina = gnabar * m*m*m*h * (v - ena)
	ik  = gkbar * n*n*n*n * (v - ek)
}


:DERIVATIVE states {   : exact Hodgkin-Huxley equations
:       evaluate_fct(v)
:       m' = (m_inf - m) / tau_m
:       h' = (h_inf - h) / tau_h
:       n' = (n_inf - n) / tau_n
:}

PROCEDURE states() {    : exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
	n = n + n_exp * (n_inf - n)
	VERBATIM
	return 0;
	ENDVERBATIM
}

UNITSOFF
INITIAL {
:
:  Q10 was assumed to be 3 for both currents
:
	tadj = 3.0 ^ ((celsius-36)/ 10 )

	m = 0
	h = 0
	n = 0
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

:       a = 0.32 * (13-v2) / ( Exp((13-v2)/4) - 1)
	a = 0.32 * vtrap(13-v2, 4)
:       b = 0.28 * (v2-40) / ( Exp((v2-40)/5) - 1)
	b = 0.28 * vtrap(v2-40, 5)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * Exp((17-v2)/18)
	b = 4 / ( 1 + Exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

:       a = 0.032 * (15-v2) / ( Exp((15-v2)/5) - 1)
	a = 0.032 * vtrap(15-v2, 5)
	b = 0.5 * Exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - Exp(-dt/tau_m)
	h_exp = 1 - Exp(-dt/tau_h)
	n_exp = 1 - Exp(-dt/tau_n)
}
FUNCTION vtrap(x,y) {
	if (fabs(x/y) < 1e-6) {
		vtrap = y*(1 - x/y/2)
	}else{
		vtrap = x/(Exp(x/y)-1)
	}
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	}else{
		Exp = exp(x)
	}
} 

Loading data, please wait...