Computational Surgery (Lytton et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140881
Figure 2 in Neocortical simulation for epilepsy surgery guidance: Localization and intervention, by William W. Lytton, Samuel A. Neymotin, Jason C. Wester, and Diego Contreras in Computational Surgery and Dual Training, Springer, 2011
Reference:
1 . Lytton WW, Neymotin SA, Wester JC, Contreras D (2011) Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
/
b11aug17
data
readme.txt
intf6_.mod *
misc.mod *
nstim.mod *
stats.mod *
vecst.mod *
col.hoc
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
gload.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nqs.hoc
nqs_utils.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
setup.hoc *
simctrl.hoc *
spkts.hoc *
stats.hoc
stdgui.hoc *
syncode.hoc
                            
// $Id: decnqs.hoc,v 1.38 2011/03/01 19:06:15 billl Exp $

load_file("nqs.hoc")
objref nq[10],pq[10]

//** prl2nqs(NQS[,min,max,nointerp]) -- transfer printlist to NQS
proc rename () {}
// eg proc rename () { sprint($s1,"P%d",objnum($s1)) }
obfunc prl2nqs () { local tstep localobj st,oq
  st=new String2()
  oq=new NQS()
  if (numarg()>=1) min=$1 else min=0
  if (numarg()>=2) max=$2 else max=printlist.count-1
  if (numarg()>=3) interp=$3 else interp=0 // no interp when looking at spk times
  if (interp) oq.resize(max-min+2)
  if (interp) {
    tstep=0.1 // 0.1 ms step size for interpolation
    oq.s[0].s="time"
    oq.v[0].indgen(0,printlist.object(0).tvec.max,tstep)
    for ii=min,max {
      XO=printlist.object(ii)
      oq.s[ii+1-min].s = XO.var
      rename(oq.s[ii+1-min].s)
      oq.v[ii+1-min].resize(oq.v.size)
      oq.v[ii+1-min].interpolate(oq.v[0],XO.tvec,XO.vec)
    }
  } else {
    for ii=min,max {
      XO=printlist.object(ii)
      st.s=XO.name
      sprint(st.t,"%s-time",XO.name)
      rename(st.s) rename(st.t)
      oq.resize(st.s,st.t)
      oq.setcols(XO.vec,XO.tvec)
    }
  }
  return oq
}

//** pvp2nqs(NQS) -- transfer grvec data file to NQS
obfunc pvp2nqs () { local min,max,interp,gvnum,ii,jj,n localobj oq,po,st,xo
  interp=min=max=gvnum=0
  if (argtype(1)==2) { po=gvnew($s1) gvnum=panobjl.count()-1 }
  if (argtype(1)==0) gvnum=$1
  if (numarg()>=2) min=$2
  if (numarg()>=3) max=$3
  if (numarg()>=4) interp=$4 // no interp when looking at spk times
  if (po==nil) po=panobjl.o(gvnum)
  oq=new NQS() st=new String2()
  if (gvnum>0) {
    if (max==0) max=po.llist.count()-1
    for ii=min,max {
      xo=po.llist.object(ii)
      po.tmpfile.seek(xo.loc)
      if (xo.num==-2) {
        sprint(st.s,"%s-time",xo.name)
        jj=oq.resize(st.s)-1
        oq.v[jj].vread(po.tmpfile)
      }
      jj=oq.resize(xo.name)-1
      oq.v[jj].vread(po.tmpfile)
    }
  } else { // from printlist
    if (max==0) max=printlist.count()-1
    for ii=min,max {
      xo=printlist.o(ii)
      jj=oq.resize(xo.name)-1
      oq.v[jj].copy(xo.vec)
      if (xo.pstep==0) {
        sprint(st.s,"%s-time",xo.name)
        jj=oq.resize(st.s)-1
        oq.v[jj].copy(xo.tvec)
      }
    }
  }
  return oq
}

//** veclist2nqs(nqs[,STR1,STR2,...])
proc veclist2nqs () { local flag,i
  if (numarg()==0) {printf("veclist2nqs(nqs[,STR1,STR2,...])\n") return}
  $o1.resize(veclist.count)
  if (numarg()==1+$o1.m) flag=1 else flag=0
  for ltr(XO,veclist) {
    $o1.v[i1].copy(XO)
    if (flag) {i=i1+2 $o1.s[i1].s=$si} else {sprint(tstr,"v%d",i1) $o1.s[i1].s=tstr}
  }
  $o1.cpout()
}

// fudup(vec[,nq,#CUTS,LOGCUT,MIN]) -- use updown() to find spikes
// LOC(0) PEAK(1) WIDTH(2) BASE(3) HEIGHT(4) START(5) SLICES(6) SHARP(7) INDEX(8) FILE(9) NESTED(10)
// other options
pos_fudup=1 // set to 1 to move whole curve up above 0
maxp_fudup=0.95 // draw top sample at 95% of max 
minp_fudup=0.05 // draw bottom sample at 5% of max
over_fudup=1    // turn over and try again if nothing found
allover_fudup=0 // turn over and add these locs (not debugged)
verbose_fudup=0 // give messages, can also turn on DEBUG_VECST for messages from updown()
obfunc fudup () { local a,i,ii,npts,logflag,min,x,sz localobj bq,cq,v1,v2,v3,bb,tl,v5,eq
  if (verbose_fudup) printf("MAXTIME appears to be %g (dt=%g)\n",$o1.size*dt,dt)
  logflag=0  npts=10 // n sample locations by default
  bq=new NQS("LOC","PEAK","WIDTH","BASE","HEIGHT","START","SLICES","SHARP","INDEX","FILE","NESTED") 
  i=2
  if (argtype(i)==1) {i+=1 if ($o2==nil) {cq=new NQS() $o2=cq} else cq=$o2} else cq=new NQS()
  if (cq.m!=11) { cq.resize(0) 
  cq.resize("LOC","PEAK","WIDTH","BASE","HEIGHT","START","SLICES","SHARP","INDEX","FILE","NESTED")}
  if (argtype(i)==0){ npts=$i i+=1
    if (argtype(i)==0){ logflag=$i i+=1
      if (argtype(i)==1) { v5=$oi i+=1
        if (npts!=v5.size) printf("Correcting npts from %d to %d\n",npts,npts=v5.size)
        if (v5.ismono(1)) v5.reverse
        if (! v5.ismono(-1)) {printf("fudup: final arg (%s) must be monotonic\n",v5) return}
      }
    }
  }
  bq.listvecs(bb)
  bq.pad(5000)
  eq=new NQS(-2,npts) a=allocvecs(v1,v2,v3)
  tl=eq.vl
  eq.clear(2e4) vrsz(2e4,v1,v2,v3)
  v1.copy($o1)
  if (pos_fudup) {
    min=v1.min
    v1.sub(min) // make it uniformly positive
  } else min=0
  if (numarg()>4) v2.copy(v5) else {
    v2.indgen(2,2+npts-1,1)   // sampling at npts points, start at 2 to avoid log(1)=0
    if (logflag) v2.log() // log sampling
    v2.scale(-maxp_fudup*v1.max,-minp_fudup*v1.max) v2.mul(-1)
  }
  v1.updown(v2,tl,bb)
  if (pos_fudup) { bq.v[1].add(min) bq.v[3].add(min) }
  cq.append(bq)
  sz=bq.size(1)
  if (allover_fudup) { // do it upside down as well
    v1.mul(-1) // v2 will be upside-down
    if (pos_fudup) {min=v1.min v1.sub(min)}
    if (0) {  // can't see a rationale to recalc sampling points
      v2.indgen(2,2+npts-1,1)   // sampling at npts points
      if (logflag) v2.log() // log sampling
      v2.scale(-0.95*v1.max,-0.05*v1.max) v2.mul(-1)
    }
    v1.updown(v2,tl,bb)
    bq.v[8].add(sz) bq.v[4].mul(-1) // turn HEIGHT upside down
    cq.append(bq)
  } else if (over_fudup && sz==0) { // turn it over an try again
    print "fudup() checking upside-down"
    v1.mul(-1) // v2 will be upside-down
    v1.updown(v2,tl,bb)
  } 
  for case(&x,0,2,5) cq.v[x].mul(dt)
  nqsdel(bq,eq)
  dealloc(a)
  return cq
}

//** listsort(LIST[,START,REV]) sorts list of strings numerically
// optional start gives a regexp to start at
proc listsort () { local x,rev localobj nq,st,xo
  if (numarg()==0) { 
    print "listsort(LIST[,RXP,REV]) numerically, optional RXP starts after there" return}
  if (numarg()==3) if ($3) rev=-1 else rev=0
  nq=new NQS("STR","NUM") nq.strdec("STR")
  st=new String()
  for ltr(xo,$o1) {
    if (numarg()>=2) sfunc.tail(xo.s,$s2,st.s) else st.s=xo.s
    if (sscanf(st.s,"%g",&x)!=1) print "listsort ERR: num not found in ",st.s
    nq.append(xo.s,x)
  } 
  nq.sort("NUM",rev)
  $o1.remove_all
  for nq.qt(st.s,"STR") $o1.append(new String(st.s))
}

// stat(VEC) print stats for the vector
// stat(VEC1,VEC2) append stats of VEC1 on VEC2
// stat(VEC1,NQS) append stats of VEC1 on NQS (create if necessary)
proc stat () { local sz
  sz=$o1.size
  if (sz<=1) {printf("decnqs::stat() WARN: %s size %d\n",$o1,$o1.size) return}
  if (numarg()==1 && sz>1) {
    printf("Sz:%d\tmax=%g; min=%g; mean=%g; stdev=%g\n",$o1.size,$o1.max,$o1.min,$o1.mean,$o1.stdev)
  } else {
    if (!isassigned($o2)) { $o2=new NQS("SIZE","MAX","MIN","MEAN","STDEV")
    } else if (isobj($o2,"NQS")) { 
      if ($o2.m!=5) {$o2.resize(0) $o2.resize("SIZE","MAX","MIN","MEAN","STDEV")}
    } else if (isobj($o2,"Vector")) revec($o2)
    if (sz>2) {$o2.append($o1.size,$o1.max,$o1.min,$o1.mean,$o1.stdev) // .append for Vector or NQS
    } else   $o2.append($o1.size,$o1.max,$o1.min,$o1.min,0) // no sdev
  }
}

//* fil2nqs(FILE,NQS) reads lines of file and places all numbers in NQS
func fil2nqs () { local a,n localobj v1
  $o2.clear
  a=allocvecs(v1)
  tmpfile.ropen($s1)
  for (n=1;tmpfile.gets(tstr)!=-1;n+=1) {
    if (n%1e3==0) printf("%d ",n)
    parsenums(tstr,v1)
    if (v1.size!=$o2.m) {
      printf("Wrong size at line %d (%d)  ",n,v1.size)  vlk(v1)
      return
    }
    $o2.append(v1)
  }
  dealloc(a)
  return $o2.size(1)
}

//** plnqs(file,NQS) reads output of txt2num.pl
// format ascii 'rows cols' then binary contents
proc plnqs () { local a,rows,cols localobj v1,v2
  a=allocvecs(v1,v2)
  tmpfile.ropen($s1)
  tmpfile.gets(tstr)
  sscanf(tstr,"%d %d",&rows,&cols)
  printf("%s: %d rows x %d cols\n",$s1,rows,cols)
  v1.fread(tmpfile,rows*cols) // could now use .transpose
  v2.indgen(0,rows*cols,cols)
  $o2.resize(cols,rows)
  for ii=0,cols-1 {
    v2.add(ii)
    $o2.v[ii].index(v1,v2)
  }
  dealloc(a)
}
    
// DEST=maxem(SRC,MIN,WIDTH) -- keep looking for maxima till get down to min
obfunc maxem () { local a,min,wid,ii,ix,beg,end localobj v1,aq
  a=allocvecs(v1)
  aq=new NQS("max","loc") aq.clear(v1.size/2)
  v1.copy($o1)
  min=$2 wid=$3
  while(v1.max>min) {
   aq.append(v1.max,ix=v1.max_ind)
   beg=ix-wid if (beg<0) beg=0
   end=ix+wid if (end>=v1.size) end=v1.size-1
   for ii=beg,end v1.x[ii]=-1e9
  }
  dealloc(a)
  return aq
}

// nqo=percl(nq,"COLA", ..) generates NQS of percentile values (10..90) for these cols
// nqo=percl(nq,min,max,step,"COLA", ..) -- eg percl(nq,50,70,5,"COLA","COLB")
obfunc percl () {  local i,ii,a,p localobj v1,v2,v3,aq,xo
  a=allocvecs(v1,v2,v3)
  aq=new NQS(numarg())
  if (argtype(2)==0) {
    v3.indgen($2,$3,$4) 
    aq.resize(aq.size(1)-3)
    i=5 j=4 // start at arg i and aq col #j
  } else {
    v3.indgen(10,90,10)
    i=2 j=1
  }
  aq.setcol(0,"PERCL",v3)
  for (;i<=numarg();i+=1) {
    $o1.getcol($si,v1)
    v1.sort()
    v2.resize(0)
    for vtr(&ii,v3) {ii/=100 v2.append(v1.x[round(ii*v1.size)])}
    aq.setcol(i-j,$si,v2)
  }
  dealloc(a)
  return aq
}

// pqunq(NQS) returns columns of sorted nique values corresponding to the arg
// NB: does not produce a rectangular array
obfunc pqunq () { local a localobj v1,v2,aq
  aq=new NQS()
  a=allocvecs(v1,v2,1e5)
  aq.sethdrs($o1)
  aq.resize(-2) 
  for ii=0,aq.m-1 {
    $o1.getcol(ii,v1)
    v1.sort 
    v2.redundout(v1)
    aq.v[ii].copy(v2)
  }
  dealloc(a)
  return aq
}

//** aa=seqind(ind) -- find beginning and end of sequential indices with 
obfunc seqind () { local a,n,skip,ii,x,last localobj vi,oq
  vi=$o1
  if (numarg()>=2) skip=$2+1 else skip=1
  if (numarg()>=3) oq=$o3
  if (!isassigned(oq)) {oq=new NQS() if (numarg()>=3) $o3=oq}
  if (oq.m!=3) { oq.resize(0) oq.resize("beg","end","diff") }
  oq.clear()
  n=last=0
  for ii=1,vi.size(1)-1 {
    if (vi.x[ii]-vi.x[ii-1]>skip) {
      if (n>0) oq.append(vi.x[last],vi.x[ii-1],0)
      last=ii
      n=0
    } else n+=1
  }
  if (n>0) oq.append(vi.x[last],vi.x[ii-1],0)
  oq.pad()
  oq.calc("<diff>.copy(<end>.c.sub(<beg>))")
  return oq
}

//** list_transpose
proc list_transpose () { localobj aq,mat,xo,inlist,outlist
  aq=new NQS() inlist=$o1 outlist=$o2
  if (!isojt(outlist,inlist)) {outlist=new List() $o2=outlist}
  for ltr(xo,inlist) aq.resize("",xo)
  mat=aq.tomat(1) // transpose
  aq.frmat(mat)
  outlist.remove_all
  aq.listvecs(outlist)
  delnqs(aq)
}

//* Sam's additions -- moved from nqs_utils.hoc
//get row of Vectors
//$o1 = nqs
//$2 = row number
//$s3 - $snumarg() - name of cols to get values for
//returns list with associated Vectors
obfunc getobjrow(){ local i,rowid localobj nq,vt,ls
  nq=$o1 rowid=$2
  ls=new List()
  vt=new Vector()
  for(i=3;i<=numarg();i+=1){
    nq.get($si,rowid,vt)
    ls.append(vt)
  }
  return ls
}

//get column of objects as Vector using oform
//$o1 = nqs
//$s2 = col name
//$3=iff==1 return list of Vectors in column, else return vector of oform of each row in column
obfunc getobjcol(){ local idx,getl localobj nq,vt,vt2,ls
  nq=$o1
  if(numarg()>2) getl=$3 else getl=0
  if(getl){
    ls=new List()
    vt=new Vector()
    for idx=0,nq.size-1{
      nq.get($s2,idx,vt)
      ls.append(vt)
    }
    return ls
  } else {
    vt=new Vector(nq.size)
    vt.resize(0)
    vt2=new Vector()
    for idx=0,nq.size-1{
      nq.get($s2,idx,vt2)
      vt.append(oform(vt2))
    }
    return vt
  }
}

//get correlation between 2 columns of an NQS
//$o1=nqs
//$s2=column name
//$s3=column name
//$4=pearson correlation iff == 1 (default), otherwise spearman
func nqcor(){ local pc localobj nq1,v1,v2
  if(numarg()>3) pc=$4 else pc=1
  nq1=$o1
  v1=nq1.getcol($s2)  v2=nq1.getcol($s3)
  if (pc) return v1.pcorrel(v2) else return v1.scorrel(v2)
}

//func nqgrslice(){ local startidx,endidx localobj nq,vtmp
//  nq=$o1 startidx=$2 endidx=$3
//  vtmp=new Vector($3-$2+1)
//  gg(
//}

func MIN(){ if($1<$2)return $1 else return $2 }

//get correlation matrix/nqs of all columns to all columns
//$o1 = NQS
//$2 = num columns 0 - NQS.m
//$3 = start row/index
//$4 = end row/index
//$5 = index increment
//$6 = window size , iff <= 0, do full columns against each other
obfunc nqcolcor(){ local startidx,endidx,inct,wint,c1,c2,ncol localobj vhr,vhl,nqc,nqf
 if(numarg()<1){
   printf("nqcolcor usage: \n\t$o1 = NQS\
                           \n\t$2 = num columns 0 - NQS.m\
                           \n\t$3 = start row/index\
                           \n\t$4 = end row/index\
                           \n\t$5 = index increment\
                           \n\t$6 = window size , iff <= 0, do full columns against each other\n")
   return nil
 }
 nqf=$o1
 if(numarg()>1) ncol=$2 else ncol=nqf.m
 if(numarg()>2) startidx=$3 else startidx=0
 if(numarg()>3) endidx=$4 else endidx=nqf.size
 if(numarg()>4) inct=$5 else inct=50*2//50ms
 if(numarg()>5) wint=$6 else wint=100*2//50ms

 vhr=new Vector(wint) vhl=new Vector(wint)

 if(wint<=0){ //full column cross-correlation
   nqc=new NQS("ID0","ID1","cor") 
   for c1=0,ncol-1{
     for c2=c1+1,ncol-1{
       nqc.append(c1,c2,nqf.v[c1].pcorrel(nqf.v[c2]))
     }
   }
 } else { //cross correlation using slices of column
   nqc=new NQS("ID0","ID1","start","end","cor") 
   for c1=0,ncol-1{
     for c2=c1+1,ncol-1{
       for(startidx=0;startidx<endidx;startidx+=inct){
         vhl.copy(nqf.v[c1],startidx,MIN(startidx+wint,endidx-1))
         vhr.copy(nqf.v[c2],startidx,MIN(startidx+wint,endidx-1))
         nqc.append(c1,c2,startidx,startidx+wint,vhl.pcorrel(vhr))
       }
     }
   }
 }

 return nqc
}

 
//read wmf ascii file (just skips header and calls rdcol)
//$s1 = wmf file path
//$2 = # of columns
// obfunc rdwmf(){ local idx,jdx,hdrlines localobj nq,myf,myftmp,strf,str,strtmp,lcols
// myf=new File() myftmp=new File() strf=new StringFunctions() str=new String() lcols=new List()
// strtmp=new String() hdrlines=6
// myf.ropen($s1)
// if(!myf.is_open()){
//  printf("rdwmf ERRA: couldn't open wmf file %s for read\n",$s1)
//  return nil
// }
// for idx=0,hdrlines-1{
//  if(myf.gets(str.s)==-1){
//    printf("rdwmf ERRB: corrupt header\n")
//    return nil
//  } else if(idx==2){
//    jdx=strf.tail(str.s,"",strtmp.s)            
//  }
// }
// myf.close()
// return nq
// }

//draw regression line
//$o1 = nqs, $s2 = column 1, $s3 = column 2
// or
//$o1 = Vector 1 , $o2 = Vector 2
//returns vo
obfunc drawregline(){ local x0,y0,x1,y1,gvtmp,r localobj vo,nq,v1,v2,vx,vy,str
  vo=new Vector(5)
  if(numarg()==3){
    nq = $o1
    v1=new Vector()  v2=new Vector()
    nq.getcol($s2,v1)
    nq.getcol($s3,v2)
  } else {
    v1=$o1 v2=$o2
  }
  v1.vstats(v2,vo)
  x0 = v2.min
  y0 = x0*vo.x(0)+vo.x(1)
  x1 = v2.max
  y1 = x1*vo.x(0)+vo.x(1)
  vx=new Vector(2)
  vx.x(0)=x0
  vx.x(1)=x1
  vy=new Vector(2)
  vy.x(0)=y0
  vy.x(1)=y1
  gvtmp=gvmarkflag
  gvmarkflag=0
  gg(vy,vx)
  gvmarkflag=gvtmp
  str=new String()
  r=v1.pcorrel(v2)
  if(name_declared("rpval_stats")){
    sprint(str.s,"r = %.2f, p = %g, N = %d",r,rpval_stats(v1.size,r),v1.size)
    g.label(0,0,str.s)
  }
  return vo
}

// select from a vector handled as a matrix -- see matrix.mod
halfmat=0
obfunc mindsel () { local a,x,r,c localobj vm,vi,oq
  vm=$o1 
  a=allocvecs(vi)
  if (numarg()==4) vi.indvwhere(vm,$s2,$3,$4) else vi.indvwhere(vm,$s2,$3)
  oq=new NQS("row","col","val") 
  oq.clear(vi.size)
  for vtr(&x,vi) {
    r=int(x/COLS) c=x-r*COLS
    if (!halfmat || c>r) oq.append(r,c,vm.x[x])
  }
  dealloc(a)
  print oq.size(1)
  return oq
}

//* return row $2 of nqs $o1 
obfunc nqrow () { local row,col localobj vout,nq
  nq=$o1
  row=$2
  vout=new Vector(nq.m)
  for col=0,nq.m-1 vout.x(col)=nq.v[col].x(row)
  return vout
}

//* find row $o2 (vector) in $o1 (nqs) and return index
//  if not there return -1
func nqfindrow () { local idx,jdx,sz localobj nq,vf,vrow
  nq=$o1  vf=$o2
  sz=nq.size(-1)
  for idx=0,sz-1 {
    vrow = nqrow(nq,idx)
    if(vrow.eq(vf)) return idx
  }
  return -1
}

//* nquniq(NQS) -- return a new NQS with unique rows in $o1
obfunc nquniq () { local sz,idx,outrow,jdx localobj nqin,nqout,vrow
  nqin=$o1
  nqout=new NQS()
  for idx=0,nqin.m-1{
    nqout.resize(nqin.s[idx].s)
    nqout.v[nqout.m-1].resize(nqin.v[idx].size)
  }
  sz=nqin.size(-1)
  jdx=0
  outrow=0
  for idx=0,sz-1{
    vrow=nqrow(nqin,idx)
    if(nqfindrow(nqout,vrow)==-1){
      for jdx=0,nqin.m-1 nqout.v[jdx].x(outrow) = vrow.x(jdx)
      outrow += 1
    }
  }
  for idx=0,nqout.m-1 nqout.v[idx].resize(outrow)
  return nqout
}

Lytton WW, Neymotin SA, Wester JC, Contreras D (2011) Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training

References and models cited by this paper

References and models that cite this paper

Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci U S A 83:3513-7 [PubMed]

Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992-8 [PubMed]

Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133-6 [PubMed]

Buonomano DV (2009) Harnessing chaos in recurrent neural networks. Neuron 63:423-5 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blumcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54:847-59; discussion 859-60 [PubMed]

Cohen-Gadol AA, Stoffman MR, Spencer DD (2003) Emerging surgical and radiotherapeutic techniques for treating epilepsy. Curr Opin Neurol 16:213-9 [PubMed]

Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M (2004) Computational physiology and the Physiome Project. Exp Physiol 89:1-26 [PubMed]

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777-82 [PubMed]

Dubitzky W (2006) Understanding the computational methodologies of systems biology. Brief Bioinform 7:315-7 [PubMed]

Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20:826-36 [PubMed]

   [48 reconstructed morphologies on NeuroMorpho.Org]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830-7 [PubMed]

Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178-82 [PubMed]

Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD, Bergey GK (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560-7 [PubMed]

Lesser RP, Crone NE, Webber WR (2010) Subdural electrodes. Clin Neurophysiol 121:1376-92

Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223-9 [PubMed]

Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073-81 [PubMed]

Lytton W, Hellman K, Sutula T (1996) Computer network model of mossy fiber sprouting in dentate gyrus Epilepsia-aes Proceedings 37 S 5:117

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Methods 171:309-15 [Journal] [PubMed]

   The virtual slice setup (Lytton et al. 2008) [Model]

Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175-81 [PubMed]

   Tonic-clonic transitions in a seizure simulation (Lytton and Omurtag 2007) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18:33-44 [PubMed]

Morrell F, Whisler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231-9 [PubMed]

Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200-10 [PubMed]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB (2001) An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol 18:533-44 [PubMed]

Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621-7 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in the Mammalian cortex. Phys Rev Lett 94:028103-92

Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31 Suppl 2:S1-6

Schramm J, Aliashkevich AF, Grunwald T (2002) Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 97:39-47 [PubMed]

Schulz R, Hoppe M, Boesebeck F, Gyimesi C, Pannek HW, Woermann FG, May T, Ebner A (2011) Analysis of reoperation in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:89-97; discussion 97 [PubMed]

Spencer SS, Schramm J, Wyler A, O'Connor M, Orbach D, Krauss G, Sperling M, Devinsky O, Elger (2002) Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 43:141-5 [PubMed]

Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5:121-34 [PubMed]

Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106:12162-7

Ty L, Yorke J (1975) Period three implies chaos Amer Math Monthly 82:985-992

Wyler AR (1997) Recent advances in epilepsy surgery: temporal lobectomy and multiple subpial transections. Neurosurgery 41:1294-301; discussion 1301-2 [PubMed]

Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37:982-90; discussion 990-1 [PubMed]

Yogarajah M, Focke NK, Bonelli SB, Thompson P, Vollmar C, McEvoy AW, Alexander DC, Symms MR, (2010) The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 133:2348-64 [PubMed]

(41 refs)