Computational Surgery (Lytton et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140881
Figure 2 in Neocortical simulation for epilepsy surgery guidance: Localization and intervention, by William W. Lytton, Samuel A. Neymotin, Jason C. Wester, and Diego Contreras in Computational Surgery and Dual Training, Springer, 2011
Reference:
1 . Lytton WW, Neymotin SA, Wester JC, Contreras D (2011) Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
/
b11aug17
data
readme.txt
intf6_.mod *
misc.mod *
nstim.mod *
stats.mod *
vecst.mod *
col.hoc
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
gload.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nqs.hoc
nqs_utils.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
setup.hoc *
simctrl.hoc *
spkts.hoc *
stats.hoc
stdgui.hoc *
syncode.hoc
                            
// $Id: network.hoc,v 1.160 2011/08/17 15:17:08 billl Exp $

//* Numbers and connectivity params

declare("colW",7,"colH",2,"torus",0)
declare("numcols",colW*colH)
declare("dbgcols",0) // whether to debug columns by making them have the same wiring and inputs
declare("colr",2) // maximal trans-column projection distance; 0 within col; 1 next col etc
declare("colnq","o[5]","lcol",new List())
{sprint(tstr,"o[%d]",numcols) declare("col",tstr)}
{sprint(tstr,"o[%d][%d]",colH,colW) declare("gcol",tstr)} // 2D column grid
double div[CTYPi][CTYPi][colr+1]//div[i][j]==# of outputs from type i->j
double wmat[CTYPi][CTYPi][STYPi][colr+1] // wmat[i][j][k]==weight from type i->j for synapse k
double delm[CTYPi][CTYPi]//avg. delay from type i->j
double deld[CTYPi][CTYPi]//delay variance from type i->j
double conv[CTYPi][CTYPi][colr+1]
dosetpmat=name_declared("pmat")==0
{sprint(tstr,"d[%d][%d][%d]",CTYPi,CTYPi,colr+1) declare("pmat",tstr)}
double prumat[CTYPi][CTYPi] //pruning matrix:prumat[i][j] specifies ratio (0-1) of synapses to prune
double sprmat[CTYPi][CTYPi] //sprouting matrix:sprmat[i][j] specifies ratio (0-1) to sprout i->j pathway with
double synloc[CTYPi][CTYPi]//location of synapses

declare("EEGain",4*15/11,"EIGain",16,"IEGain",8,"IIGain",8)
// declare("NMAMR",0.1,"EENMGain",1,"EIGainInterC",0.125*4,"EEGainInterC",0.1625*4)
declare("NMAMR",0.1,"EENMGain",1,"EIGainInterC",0.5,"EEGainInterC",0.6)

//* prdiv() - print div
proc prdiv () { local ii,jj
  for ii=0,CTYPi-1 for jj=0,CTYPi-1 if(div[ii][jj][0]) {
    printf("div[%s][%s][0]=%g\n",CTYP.o(ii).s,CTYP.o(jj).s,div[ii][jj][0])
  }
}

// %con (con/pre) = %div (div/post)
DEAD_DIV_INTF6=0
declare("jcn",1)
declare("disinhib",0) //iff==1 , turn off inhibition, by setting wmat[I%d][...]==0 in inhiboff()
declare("scale",4)//16//8//4
declare("pmatscale",1/scale) // scale for pmat - allows keeping it fixed while changing # of cells in network

batch_flag=declare("dstr",datestr,"setdviPT",NORM)
declare("params","not batch","ofile",output_file)
declare("dvseed",534023) // seed for wiring

dosetcpercol=name_declared("cpercol")==0 // whether to set values in cpercol or use user-supplied values
{sprint(tstr,"d[%d]",CTYPi) declare("cpercol",tstr)} // cells of a specific type per column
declare("vcpercol",new Vector(CTYPi))
declare("E5BNumF",1,"E5RNumF",1) // factors for # of E5 cells
declare("newkmjnums",0) // use #s based on KMJ #s in  /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V
declare("E2E2Inter",1) // whether to connect E2->E2 intercol
declare("E5RFctr",1.5) // used to control level of recurrent of E5
declare("E2RFctr",1) // used to control level of recurrence of E2

//* setcpercol - set # of cells per column
proc setcpercol () { local i // (/u/samn/vcsim/notebook.dol_1:24562)(notebook.dol_1:24492)
  if(dosetcpercol) { // if user didn't supply values (default), set # of cells of a type per column
    if(newkmjnums) {

      // based on KMJ #s in  /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V

      cpercol[E2] = 169 * scale
      cpercol[I2] = 48 * scale
      cpercol[I2L] = 8 * scale

      cpercol[E4] = 83 * scale
      cpercol[I4] = 24 * scale
      cpercol[I4L] = 4 * scale

      cpercol[E5R] = 93 * scale
      cpercol[E5B] = 32 * scale
      cpercol[I5] = 36 * scale
      cpercol[I5L] = 6 * scale

      cpercol[E6] = 218 * scale
      cpercol[I6] = 62 * scale
      cpercol[I6L] = 11 * scale

    } else {
      cpercol[E2]  = 150 * scale
      cpercol[E4] =   30 * scale
      cpercol[E5B] =  int(17 * scale * E5BNumF)
      cpercol[E5R] =  int(65 * scale * E5RNumF)
      cpercol[E6] =   60 * scale
      cpercol[I2L] =  13 * scale
      cpercol[I2]  =  25 * scale
      cpercol[I4L] =  14 * scale 
      cpercol[I4]  =  20 * scale
      cpercol[I5L] =  13 * scale
      cpercol[I5]  =  25 * scale
      cpercol[I6L] =  13 * scale
      cpercol[I6] =   25 * scale
    }
  }
  {vcpercol.resize(CTYPi) vcpercol.fill(0)} // store the values in a vector
  for i=0,CTYPi-1 vcpercol.x(i)=cpercol[i]
}

//* setpmat()
proc setpmat () { local pre,po
  if(!dosetpmat) return // if pmat setup by user (in notebook), then don't reset its values
  for ii=0,CTYPi-1 for jj=0,CTYPi-1 for kk=0,1 pmat[ii][jj][kk]=0
  pmat[E2][E2][0]=0.187 * E2RFctr
  if(E2E2Inter) pmat[E2][E2][1]=0.14 * E2RFctr
  pmat[E2][E4][0]=0.024
  pmat[E2][E5B][0]=0.024
  pmat[E2][E5R][0]=0.057
  pmat[E2][E6][0]=0
  pmat[E2][I2L][0]=0.51
  pmat[E2][I2][0]=0.43
  pmat[E2][I2][1]=0.14
  pmat[E4][E2][0]=0.145
  pmat[E4][E4][0]=0.243
  pmat[E4][E5B][0]=0.122
  pmat[E4][E5R][0]=0.116
  pmat[E4][E6][0]=0.032
  pmat[E4][I4L][0]=0.51
  pmat[E4][I4][0]=0.43
  pmat[E4][I4][1]=0.14
  pmat[E5B][E2][0]=0.018
  pmat[E5B][E2][1]=0.25
  pmat[E5B][E2][2]=0.1
  pmat[E5B][E4][0]=0.007
  pmat[E5B][E5B][0]=0.07 * E5RFctr
  pmat[E5B][E5B][1]=0.25 * E5RFctr
  pmat[E5B][E5B][2]=0.1 * E5RFctr
  pmat[E5B][E5R][0]=0.017 * E5RFctr
  pmat[E5B][E5R][1]=0.25 * E5RFctr
  pmat[E5B][E5R][2]=0.1 * E5RFctr
  pmat[E5B][E6][0]=0.07
  pmat[E5B][I2L][1]=0.14
  pmat[E5B][I2L][2]=0.07
  pmat[E5B][I5L][0]=0.51
  pmat[E5B][I5L][1]=0.14
  pmat[E5B][I5L][2]=0.07
  pmat[E5B][I5][0]=0.43
  pmat[E5B][I5][1]=0.14
  pmat[E5B][I5][2]=0.07
  pmat[E5R][E2][0]=0.022
  pmat[E5R][E4][0]=0.007
  pmat[E5R][E5B][0]=0.08 * E5RFctr
  pmat[E5R][E5B][1]=0.25 * E5RFctr
  pmat[E5R][E5R][0]=0.191 * E5RFctr
  pmat[E5R][E5R][1]=0.14 * E5RFctr
  pmat[E5R][E6][0]=0.032
  pmat[E5R][I5L][0]=0.51
  pmat[E5R][I5][0]=0.43
  pmat[E5R][I5][1]=0.14
  pmat[E6][E2][0]=0
  pmat[E6][E4][0]=0
  pmat[E6][E5B][0]=0.028
  pmat[E6][E5R][0]=0.006
  pmat[E6][E6][0]=0.028
  pmat[E6][I6L][0]=0.51
  pmat[E6][I6][0]=0.43
  pmat[E6][I6][1]=0.14
  pmat[I2L][E2][0]=0.35
  pmat[I2L][E5B][0]=0.5
  pmat[I2L][E5R][0]=0.35
  pmat[I2L][E6][0]=0.25
  pmat[I2L][I2L][0]=0.09
  pmat[I2L][I2][0]=0.53
  pmat[I2L][I5][0]=0.53
  pmat[I2L][I6][0]=0.53
  pmat[I2][E2][0]=0.44
  pmat[I2][I2L][0]=0.34
  pmat[I2][I2][0]=0.62
  pmat[I4L][E4][0]=0.35
  pmat[I4L][I4L][0]=0.09
  pmat[I4L][I4][0]=0.53
  pmat[I4][E4][0]=0.44
  pmat[I4][I4L][0]=0.34
  pmat[I4][I4][0]=0.62
  pmat[I5L][E2][0]=0.35
  pmat[I5L][E5B][0]=0.35
  pmat[I5L][E5R][0]=0.35
  pmat[I5L][E6][0]=0.25
  pmat[I5L][I2][0]=0.53
  pmat[I5L][I5L][0]=0.09
  pmat[I5L][I5][0]=0.53
  pmat[I5L][I6][0]=0.53
  pmat[I5][E5B][0]=0.44
  pmat[I5][E5R][0]=0.44
  pmat[I5][I5L][0]=0.34
  pmat[I5][I5][0]=0.62
  pmat[I6L][E2][0]=0.35
  pmat[I6L][E5B][0]=0.25
  pmat[I6L][E5R][0]=0.25
  pmat[I6L][E6][0]=0.35
  pmat[I6L][I2][0]=0.53
  pmat[I6L][I5][0]=0.53
  pmat[I6L][I6L][0]=0.09
  pmat[I6L][I6][0]=0.53
  pmat[I6][E6][0]=0.44
  pmat[I6][I6L][0]=0.34
  pmat[I6][I6][0]=0.62
}

//* scalepmat(fctr) - multiply values in pmat by fctr
proc scalepmat () { local fctr,from,to,cl
  fctr=$1
  for from=0,CTYPi-1 for to=0,CTYPi-1 for cl=0,1 pmat[from][to][cl] *= fctr
}

//* pmat2nq - return an NQS with info in pmat
obfunc pmat2nq () { local i,j,k localobj nqpmat
  nqpmat=new NQS("froms","tos","from","to","cold","pij")
  {nqpmat.strdec("froms") nqpmat.strdec("tos")}
  for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr if(pmat[i][j][k]) {
    nqpmat.append(CTYP.o(i).s,CTYP.o(j).s,i,j,k,pmat[i][j][k])
  }  
  return nqpmat
}

//* nq2pmat - load NQS ($o1) into pmat
proc nq2pmat () { local i,j,k localobj nq,vf,vto,vc,vpij
  {nq=$o1 nq.tog("DB") vf=nq.getcol("from") vto=nq.getcol("to") vc=nq.getcol("cold") vpij=nq.getcol("pij")}
  for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr pmat[i][j][k]=0
  for i=0,vf.size-1 pmat[vf.x(i)][vto.x(i)][vc.x(i)]=vpij.x(i)
  print "loaded " , nq , " into pmat"
}

//* synapse locations DEND SOMA AXON
proc setsynloc () { local from,to
  for from=0,CTYPi-1 for to=0,CTYPi-1 {
    if(ice(from)) {
      if(IsLTS(from)) {
        synloc[from][to]=DEND // distal [GA2] - from LTS
      } else {
        synloc[from][to]=SOMA // proximal [GA] - from FS
      }
    } else {
      synloc[from][to]=DEND // E always distal. use AM2,NM2
    }
  }
}

//* setdelmats -- setup delm,deld
proc setdelmats () { local from,to,ii,jj
  for from=0,CTYPi-1 for to=0,CTYPi-1 {
    if(synloc[from][to]==DEND) {
      delm[from][to]=4
      deld[from][to]=1
    } else {
      delm[from][to]=2.0
      deld[from][to]=0.2
    }
  }
  // snum=0
  // for ii=0,CTYPi-1 for jj=0,CTYPi-1 snum+=int(pmat[ii][jj][0]*numc[ii]*numc[jj]+1)
}

//* weight params
//** delay all 2+/-0.02 within column for now
proc setwmat () { local from,to,sy,gn,c
  for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 for c=0,colr wmat[from][to][sy][c]=0

  wmat[E2][E2][AM2][0]=0.78
  wmat[E2][E2][AM2][1]=0.47 * EEGainInterC / 5.0
  wmat[E2][E4][AM2][0]=0.36
  wmat[E2][E5B][AM2][0]=0.36
  wmat[E2][E5R][AM2][0]=0.93
  wmat[E2][E6][AM2][0]=0
  wmat[E2][I2L][AM2][0]=0.23

  wmat[E2][I2][AM2][0] = 0.23
  wmat[E2][I2][AM2][1] = 1.5 * EIGainInterC

  wmat[E4][E2][AM2][0]=0.58
  wmat[E4][E4][AM2][0]=0.95
  wmat[E4][E5B][AM2][0]=1.01
  wmat[E4][E5R][AM2][0]=0.54
  wmat[E4][E6][AM2][0]=2.27
  wmat[E4][I4L][AM2][0]=0.23

  wmat[E4][I4][AM2][0] = 0.23
  wmat[E4][I4][AM2][1] = 1.5 * EIGainInterC

  wmat[E5B][E2][AM2][0]=0.26
  wmat[E5B][E2][AM2][1]=0.47 * EEGainInterC
  wmat[E5B][E2][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E4][AM2][0]=0.17
  wmat[E5B][E5B][AM2][0]=0.71
  wmat[E5B][E5B][AM2][1]=0.47 * EEGainInterC * 1.5
  wmat[E5B][E5B][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E5R][AM2][0]=0.24
  wmat[E5B][E5R][AM2][1]=0.47 * EEGainInterC * 1.5
  wmat[E5B][E5R][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E6][AM2][0]=0.49

  wmat[E5B][I2L][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I2L][AM2][2]=1.5 * EIGainInterC

  wmat[E5B][I5L][AM2][0]=0.23
  wmat[E5B][I5L][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I5L][AM2][2]=1.5 * EIGainInterC

  wmat[E5B][I5][AM2][0]=0.23
  wmat[E5B][I5][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I5][AM2][2]=1.5 * EIGainInterC

  wmat[E5R][E2][AM2][0]=0.67
  wmat[E5R][E4][AM2][0]=0.48
  wmat[E5R][E5B][AM2][0]=0.88
  wmat[E5R][E5B][AM2][1]=0.47 * EEGainInterC * 1.5
  wmat[E5R][E5R][AM2][0]=0.66 * 1.5
  wmat[E5R][E5R][AM2][1]=0.47 * EEGainInterC * 1.5
  wmat[E5R][E6][AM2][0]=0.28
  wmat[E5R][I5L][AM2][0]=0.23
  wmat[E5R][I5][AM2][0]=0.23
  wmat[E5R][I5][AM2][1]=1.5 * EIGainInterC

  wmat[E6][E2][AM2][0]=0
  wmat[E6][E4][AM2][0]=0
  wmat[E6][E5B][AM2][0]=0.53
  wmat[E6][E5R][AM2][0]=0.08
  wmat[E6][E6][AM2][0]=0.53
  wmat[E6][I6L][AM2][0]=0.23
  wmat[E6][I6][AM2][0]=0.23
  wmat[E6][I6][AM2][1]=1.5 * EIGainInterC

  wmat[I2L][E2][GA2][0]=0.83
  wmat[I2L][E5B][GA2][0]=0.83
  wmat[I2L][E5R][GA2][0]=0.83
  wmat[I2L][E6][GA2][0]=0.83
  wmat[I2L][I2L][GA2][0]=1.5
  wmat[I2L][I2][GA2][0]=1.5
  wmat[I2L][I5][GA2][0]=0.83
  wmat[I2L][I6][GA2][0]=0.83

  wmat[I2][E2][GA][0]=1.5
  wmat[I2][I2L][GA][0]=1.5
  wmat[I2][I2][GA][0]=1.5

  wmat[I4L][E4][GA2][0]=0.83
  wmat[I4L][I4L][GA2][0]=1.5
  wmat[I4L][I4][GA2][0]=1.5

  wmat[I4][E4][GA][0]=1.5
  wmat[I4][I4L][GA][0]=1.5
  wmat[I4][I4][GA][0]=1.5

  wmat[I5L][E2][GA2][0]=0.83
  wmat[I5L][E5B][GA2][0]=0.83
  wmat[I5L][E5R][GA2][0]=0.83
  wmat[I5L][E6][GA2][0]=0.83
  wmat[I5L][I2][GA2][0]=0.83
  wmat[I5L][I5L][GA2][0]=1.5
  wmat[I5L][I5][GA2][0]=1.5
  wmat[I5L][I6][GA2][0]=0.83

  wmat[I5][E5B][GA][0]=1.5
  wmat[I5][E5R][GA][0]=1.5
  wmat[I5][I5L][GA][0]=1.5
  wmat[I5][I5][GA][0]=1.5

  wmat[I6L][E2][GA2][0]=0.83
  wmat[I6L][E5B][GA2][0]=0.83
  wmat[I6L][E5R][GA2][0]=0.83
  wmat[I6L][E6][GA2][0]=0.83
  wmat[I6L][I2][GA2][0]=0.83
  wmat[I6L][I5][GA2][0]=0.83
  wmat[I6L][I6L][GA2][0]=1.5
  wmat[I6L][I6][GA2][0]=1.5

  wmat[I6][E6][GA][0]=1.5
  wmat[I6][I6L][GA][0]=1.5
  wmat[I6][I6][GA][0]=1.5

  //set NMDA weights
  for from=0,CTYPi-1 for to=0,CTYPi-1 for c=0,colr wmat[from][to][NM2][c]=NMAMR*wmat[from][to][AM2][c]
  //gain control
  for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=AM,GA2 for c=0,colr if(wmat[from][to][sy][c] > 0) {
    if(ice(from)) {
      if(ice(to)) {
        gn = IIGain
      } else {
        gn = IEGain
      }
      if(IsLTS(from) && !IsLTS(to)) gn *= 0.5
    } else {
      if(ice(to)) {
        gn = EIGain 
        if(IsLTS(to)) gn *= 0.5
      } else {
        gn = EEGain
        if(sy==NM || sy==NM2) gn *= EENMGain // E->E NMDA gain
      }
    }
    wmat[from][to][sy][c] *= gn 
  }
}

// %con (con/pre) = %div (div/post)

//* prune using values in prumat
proc pruc () { local i,j
  for i=0,CTYPi-1 for j=0,CTYPi-1{
      if(div[i][j][0] && numc[i] && numc[j] && prumat[i][j]){
        printf("Warning: pruning random %.2f%% of %s->%s syns\n",prumat[i][j]*100,CTYP.o(i).s,CTYP.o(j).s)
        for ixt(i) XO.prune(prumat[i][j],j)
      }
  }
}

//* get sprouting value assuming 0% sprouting == 50% pruning
func getspr () { local pr
  pr = $1
  return ((0.5-pr)/.5)*100
}

//* turn off pruning
proc pruoff () { local i,j
 for i=0,CTYPi-1 for j=0,CTYPi-1 prumat[i][j]=0
 for i=0,allcells-1 INTF6[i].prune(0)
}

//* set all entries in pruning matrix to $1
proc setpru () { local from,to,val
  val=$1
  pruoff() // first turn off pruning
  for from=0,CTYPi-1 for to=0,CTYPi-1 prumat[from][to]=val
}

//* print prumat
proc prumatpr () { local i,j
  for i=0,CTYPi-1 { for j=0,CTYPi-1{
      printf("%.2f  ",prumat[i][j])
   }
   printf("\n")
  }
}

//* the Killers
//** ColKillType(column id, type id, flag==1 to kill, 0 to unkill)
proc ColKillType () { local i,cidx,f,ty
  cidx=$1 ty=$2 f=$3
  for i=col[cidx].ix[ty],col.ix[ty]+col.numc[ty]-1 col[cidx].ce.o(i).flag("dead",f)
}

//** unkill() will set all the dead to undead
proc unkill () { for ii=0,numcols-1 col[ii].ce.o(0).flag("dead",0,1) }

//** kill2(column,flag==1 to kill, 0 to unkill) -- only effects cells in L2 of specified column
proc kill2 () { local f,c,i
  c=$1 f=$2
  for case(&i,E2,I2,I2L) ColKillType(c,i,f)
}

//** kill5(column,flag==1 to kill, 0 to unkill) -- only effects cells in L5 of specified column
proc kill5 () { local f,c,i
  c=$1 f=$2
  for case(&i,E5R,E5B,I5,I5L) ColKillType(c,i,f)
}

//** getkillids - gets ids of cells to kill in $o1 but excludes cells that are stim'ed
//$1=cell type to kill,$2=prct of cells to kill,$o3=vq stim nqs,$4=out vector of kill ids,$5=rnd seed
func getkillids () { local killcnt,i,j,ct,prct localobj vq,vkid,rd
  ct=$1 prct=$2 vq=$o3 vkid=$o4 killcnt=int(prct*numc[ct]) vkid.resize(0) j=0 i=ix[ct]
  rd=new Random() rd.ACG($5)
  while(j<killcnt){
    i=rd.discunif(ix[ct],ixe[ct])
    if(!vq.v[0].contains(i)){
      j+=1
      vkid.append(i)
    }
    i+=1
  }
  return killcnt
}

//* read .net file
strdef netfile
{sp = new NQS() cp = new NQS()}

//* CREATE CELLS
// %con (con/pre) = %div (div/post)
n=ty=id=0

//* sprcells() sprout cells in specific pathways using sprmat, $1=seed for rand generator
//max div is still 0.75*poty
func sprcells () { local id,a,prty,poty,sz,ls,mx,i localobj vid,vnewid,vnewdel,rd,vd,vtmp
  ls=$1 a=allocvecs(vid,vnewid,vnewdel,vd,vtmp) rd=new Random() rd.ACG(ls)
  for prty=0,CTYPi-1 for poty=0,CTYPi-1 if(sprmat[prty][poty]) for id=ix[prty],ixe[prty] {
    ce.o(id).getdvi(vid) ce.o(id).getdvi(0.2,vd)
    sz=div[prty][poty][0]*sprmat[prty][poty] mx=0.75*numc[poty]
    if(vd.x(poty)>=mx)continue//already @ max size
    while(sz+vd.x(poty)>mx) sz-=1
    vrsz(sz*4,vtmp,vnewid) rd.discunif(ix[poty],ixe[poty]) vtmp.setrand(rd)
    vtmp.uniq(vnewid) vtmp.resize(0)
    for i=0,vnewid.size-1 if(!vid.contains(vnewid.x(i))) vtmp.append(vnewid.x(i))
    vtmp.resize(sz)
    if(vtmp.size) {
      vnewdel.resize(vtmp.size)
      rd.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty])
      vnewdel.setrand(rd)
      ce.o(id).setdvi(vtmp,vnewdel,2)
    }
  }
  dealloc(a)
  return 1
}

//** gethublims(col,hubtype,hubfactor,numhubs,mode) 
// get a matrix of size CTYPi X CTYPi, specifying div with mat.x(hubtype,othertype)
// and conv with mat.x(othertype,hubtype)
// hubtype = type of hub. hubfactor = desired ratio of hub div/conv vs non-hub div/conv
// numhubs = # of hubs. col = COLUMN for which to set hubs.
// mode == 0 <-- hub div(conv) is set to hubfactor * original div(conv)
// mode == 1 <-- hub div(conv) is set so that final hub div = hubfactor * final non_hub div (same for conv)
//  formula is based on:  m / ((N-H*m) / (C-H)) = F , and then solving for m
//   m = div for the hubs,  F = desired ratio of final hub div to final non-hub div
//   N = # of synapses (links),  C = total # of postsynaptic cells (including hubs) , H = # of hubs
//   similarly done for conv , but replace N with appropriate values
//   (/u/samn/intfcol/notebook.dol_1:21933)
obfunc gethublims () { local ct,mode,from,to,lim,nc,nhubs,fctr localobj col,mat
  {col=$o1 ct=$2 fctr=$3 nhubs=$4 mode=$5 mat=new Matrix(CTYPi,CTYPi)}
  for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to]) {
    {nc=col.numc[to] if(ct==to)nc-=1} // deduct for self-link
    if(mode==0) {
      lim = int( 0.5 + col.div[ct][to]*fctr )
    } else {
      lim = int( 0.5 + col.div[ct][to]*col.numc[ct]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
    }
    mat.x(ct,to) = MINxy(lim, nc) // at most div to all postsynaptic cells
  }
  for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct]) {
    {nc=col.numc[from] if(ct==from)nc-=1} // deduct for self-link
    if(mode==0) {
      lim = int( 0.5 + col.conv[from][ct]*fctr )
    } else {
      lim = int( 0.5 + col.div[from][ct]*col.numc[from]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
    }
    mat.x(from,ct) = MAXxy(MINxy(lim, nc),1) // at most conv from all presynaptic cells, but at least 1
  }
  return mat
}

//** addhubs(column,cell-type,numhubs,scaling factor,skipI[,seed,allowz,hubmode,verbose])
// add hubs to the network by stealing wires from other neurons
// $o1 == column
// $2 == cell type of hub
// $3 == number of hubs to add
// $4 == scaling factor (should be > 1.0) for conv,div of hub
// $5 == skip div/conv of I cells
// $6 == seed - optional
// $7 == allowz - whether to allow pulling all links from/to another cell
// $8 == hubmode - which mode to use for gethublims (see above)
// $9 == verbose - optional
// function returns a Vector containing the ids of the cells selected as hubs (within column ids)
obfunc addhubs () { local a,ct,fctr,nhubs,idx,jdx,lseed,hubid,szorig,cursz,preid,poid,lim,skipI,to,from,vrb,changed,allowz,hmode\
                 localobj col,ce,vin,vout,nq,vd,vc,vdd,vdt,vddt,vpicked,vhubid,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz,mhlim
  col=$o1 ct=$2 nhubs=$3 fctr=$4 skipI=$5
  if(numarg()>5) lseed=$6 else lseed=1234
  if(numarg()>6) allowz=$7 else allowz=1
  if(numarg()>7) hmode=$8 else hmode=0
  if(numarg()>8) vrb=$9 else vrb=0
  {ce=col.ce hashseed_stats(lseed,lseed,lseed)}
  a=allocvecs(vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz)
  vrsz(col.allcells,vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vdsz,vcsz,vtmp)
  mhlim=gethublims(col,ct,fctr,nhubs,hmode)
  //vin,vout = input/output markers. vd,vc = div/conv.
  //vdd div/conv delays, vdt div/conv temp. vddt=div/conv delay temp
  //vpicked=which cells already picked as hubs
  vhubid=new Vector()
  {vhubid.indgen(col.ix[ct],col.ixe[ct],1) vhubid.shuffle() vhubid.resize(nhubs)}
  if(vrb) vlk(vhubid)
  for idx=0,vhubid.size-1 vpicked.x(vhubid.x(idx))=1 
  for idx=0,vhubid.size-1 { hubid=vhubid.x(idx) 
    if(vrb) printf("hub%d id = %d\n",idx+1,hubid)
    {ce.o(hubid).getdvi(vd,vdd,vw1,vw2,vprob,vsyn) ce.o(hubid).getconv(vc)}//IDs of post/presynaptic cells
    {ce.o(hubid).getconv(1.2,vcsz) vdsz.resize(CTYPi) vdsz.fill(0)}//counts of post/pre types
    for jdx=0,vd.size-1 vdsz.x(ce.o(vd.x(jdx)).type)+=1
    {vout.fill(0) vin.fill(0)}     //init as 0
    for jdx=0,vd.size-1 vout.x(vd.x(jdx))=1 //mark current postsynaptic cells
    for jdx=0,vc.size-1 vin.x(vc.x(jdx))=1  //mark current presynaptic cells
    for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to] && (!skipI || !ice(to))) {
      cursz=szorig=vdsz.x(to) // update divergence
      if(vrb) print "\torig div -> " , CTYP.o(to).s, " = " , szorig
      {lim=mhlim.x(ct,to) changed=1}
      while(cursz<lim && changed==1) { changed=0
        for(preid=col.ix[ct];preid<=col.ixe[ct] && cursz<lim;preid+=1) {// pick same presynaptic type
          if(vpicked.x(preid)) continue //dont take from other hubs
          ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt) 
          vtmp.fill(0)
          for jdx=0,vdt.size-1 vtmp.x(ce.o(vdt.x(jdx)).type)+=1
          if(!allowz && vtmp.x(to)<=1)continue//dont want to turn div of another cell to 0
          for jdx=0,vdt.size-1 { poid=vdt.x(jdx) // go thru postsynaptic cells looking for target type            
            if(ce.o(poid).type==to && poid!=hubid && vout.x(poid)==0) { cursz+=1
              {vd.append(poid) vdd.append(vddt.x(jdx)) vsyn.append(vsynt.x(jdx))}
              {vdt.remove(jdx) vddt.remove(jdx) vsynt.remove(jdx)}
              ce.o(preid).setdvi(vdt,vddt,vsynt) // update presynaptic cell
              vout.x(poid)=changed=1 // this cell synapses on poid
              break
            }
          }
        }
      }
      if(vrb) print "\tnew div -> " , CTYP.o(to).s, " = " , cursz
    }
    ce.o(hubid).setdvi(vd,vdd,vsyn) // update hub dvi
    for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct] && (!skipI || !ice(from))) {
      cursz=szorig=vcsz.x(from) // update convergence
      {lim=mhlim.x(from,ct) changed=1}
      if(vrb) print "\torig conv <- ", CTYP.o(from).s, " = " , szorig
      while(cursz<lim && changed==1) { changed=0
        for(preid=col.ix[from];preid<=col.ixe[from]&&cursz<lim;preid+=1) {
          if(preid==hubid || vin.x(preid)) continue // don't make self or double-connects
          ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt)
          for jdx=0,vdt.size-1{
            poid = vdt.x(jdx)
            if(vpicked.x(poid)) continue // don't take wires from other hubs            
            if(ce.o(poid).type==ct){ ce.o(poid).getconv(1.2,vtmp)
              if(allowz || vtmp.x(from)>1) { // make sure not to remove all inputs of a type to a cell
                vdt.x( jdx ) = hubid // reassign input to hub
                ce.o(preid).setdvi(vdt,vddt,vsynt) // reset presynaptic cell's div
                vin.x( preid ) = changed = 1 // mark input
                cursz += 1
                break
              }
            }
          }
        }
      }
      if(vrb) print "\tnew conv <- " , CTYP.o(from).s, " = " , cursz
    }    
  }
  {dealloc(a) return vhubid}
}

//* mkcolnqs - make an nqs with current pmat,wmat,delm,deld info for use by a COLUMN for wiring
// "dist" represents distance between columns: dist==0 for intra-COLUMN setup, dist>0 for INTER-COLUMN setup
proc mkcolnqs () { local from,to,sy,idx,d localobj froms,tos,sys
  if(numarg()>0)idx=$1 else idx=0
  {nqsdel(colnq[idx]) colnq[idx]=new NQS("froms","tos","sys","from","to","sy","w","pij","delm","deld","loc","dist")}
  colnq[idx].strdec("froms","tos","sys")
  for from=0,CTYPi-1 { froms=CTYP.o(from)
    for to=0,CTYPi-1 { tos=CTYP.o(to)
      for d=0,colr if(pmat[from][to][d]>0) for sy=0,STYPi-1 if(wmat[from][to][sy][d]>0) { sys=STYP.o(sy)
        colnq[idx].append(froms.s,tos.s,sys.s,from,to,sy,wmat[from][to][sy][d],pmat[from][to][d],delm[from][to],deld[from][to],synloc[from][to],d)
      }
    }
  }
}

//* mkcols - make the COLUMNs
proc mkcols () { local id,x,y,seed
  id=0
  for y=0,colH-1 for x=0,colW-1 {
    if(dbgcols)seed=dvseed else seed=(id+1)*dvseed
    lcol.append(gcol[y][x]=new COLUMN(id,vcpercol,colnq,seed,x,y,setdviPT))
    col[id]=gcol[y][x]
    col[id].verbose=verbose_INTF6
    id+=1
  }
}

//* wirecols - setup inter-COLUMN connectivity with NetCon
proc wirecols () { local x1,y1,x2,y2,dx,dy,maxd,d localobj fromc,toc
  if(numarg()>0) d=$1 else d=colr
  if(torus) { // wraparound
    //alternate coordinates: ( -colW+x   ,  -colH+y )
    //alternate system: -5  -4  -3  -2  -1
    //original system:   0   1   2   3   4
    //layed out as a line: -5  -4  -3  -2  -1  0   1   2   3   4
    //only need to compare in normal system, and 1 alternate coordinate vs original (and vice versa)
    for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
      if(y1==y2 && x1==x2) continue // skip self-self    
      dx=MINxy(abs(x1-x2), MINxy(abs((-colW+x1)-x2), abs(x1-(-colW+x2))) )
      dy=MINxy(abs(y1-y2), MINxy(abs((-colH+y1)-y2), abs(y1-(-colH+y2))) )
      if((maxd=MAXxy(dx,dy)) > d) continue // skip too far
      gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
    }
  } else { // no wrap-around
    for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
      if(y1==y2 && x1==x2) continue // skip self-self    
      if((maxd=MAXxy(abs(x1-x2),abs(y1-y2))) > d) continue // skip too far
      gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
    }
  }
}

//* intercoloff - turn off all weights between COLUMNs
proc intercoloff () { local i localobj xo
  for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) {
    for i=0,6 xo.weight(i)=0
  }
}

//* intercolmul(from,to,sy,w)
proc intercolsyw () { local from,to,sy,w localobj xo
  setwmat()
  for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) {
    if(xo.pre.flag("inhib")) {
      for case(&sy,GA,GA2) xo.weight(sy) = wmat[xo.pre.type][xo.syn.type][sy][1]
    } else {
      for case(&sy,AM2,NM2) xo.weight(sy) = wmat[xo.pre.type][xo.syn.type][sy][1]
    }
  }
}

//* function calls to setup network

//** # of cells per column
setcpercol() //new numbers (10aug30)

//** setup pmat
if(name_declared("nqpmat")==2) { // read pmat from NQS if available, else set to default
  if(nqpmat!=nil) nq2pmat(nqpmat) else setpmat()
} else setpmat()
if(pmatscale!=1) scalepmat(pmatscale)

//** setup synapse locations,delays,wmat
setsynloc()
setdelmats()
setwmat() // new KMJ version

scrsz=50*1e3
double scr[scrsz]

//** make cells, columns, wire columns
mkcolnqs()
mkcols()
wirecols(1)

Loading data, please wait...