Computational Surgery (Lytton et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:140881
Figure 2 in Neocortical simulation for epilepsy surgery guidance: Localization and intervention, by William W. Lytton, Samuel A. Neymotin, Jason C. Wester, and Diego Contreras in Computational Surgery and Dual Training, Springer, 2011
Reference:
1 . Lytton WW, Neymotin SA, Wester JC, Contreras D (2011) Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
/
b11aug17
data
readme.txt
intf6_.mod *
misc.mod *
nstim.mod *
stats.mod *
vecst.mod *
col.hoc
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
gload.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nqs.hoc
nqs_utils.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
setup.hoc *
simctrl.hoc *
spkts.hoc *
stats.hoc
stdgui.hoc *
syncode.hoc
                            
// $Id: run.hoc,v 1.67 2011/02/24 23:15:54 billl Exp $

//* variables

objref wf1,wf2,wrec
sprint(tstr,"o[%d]",numcols)
declare("vit",tstr,"nqLFP",tstr,"SPKSZ",20e6)
 // {wf1=new File() wf2=new File()}
// wrec = new NQS("time","ID","SYN","WT")
// wrec.zvec(2e7) // make big enough?

method("local") // why was this being used?
method("global")
cvode.atol(1e-3) 
cvode.condition_order(1) // irrelevant to acells?
declare("sepflds",0) // whether to record separate fields for each layer
declare("randrun",0) // iff true doesn't reinit the NetStim rand # generators, so each run different

// set globals
for jj=0,CTYPi-1 {
  numc[jj]=cpercol[jj] // for ctt(&x) printf("%s ",CTYP.o(x).s)
  ix[jj]=COLUMN[0].ix[jj]
  ixe[jj]=COLUMN[0].ixe[jj]
}

//* functions

// rv2 is part of grvec.hoc, as a stub, so it can be
// customized to do something to vector before graphing it
proc rv2 () { }

//** draw lines between cell subpopulations
proc rasterlines () { localobj o
  g=graphItem
  for ct=0,CTYPi-1 if(col.numc[ct]) {
    drline(0,col.ixe[ct],mytstop,col.ixe[ct],g,2,6)
    // o=mdl2view(g,0,ix[ii]+numc[ii]/10)
    o=mdl2view(g,0.9,col.ix[ct]+col.numc[ct]/4)
    g.label(0.9,o.x[3],CTYP.o(ct).s)
  }
  g.flush
}
//** calls rasterlines, making sure g is set first
proc grlines () { 
  {g=Graph[$1] rasterlines()}
}

proc a () { local sh,sv
  if(g==nil)gg()
  if (!isobj(aa,"Graph")) aa=g else g=aa
  if (aa.view_count==0) aa=g
  sv=gnum gnum=ojtnum(g)
  graphItem=g
  sh=0 grv_.super=1 g.erase_all
  grv_.gveraseflag=0  grv_.gvmarkflag=grv_.super=1 // gnum=0
  gv(0,1+sh,2) // gv(1,3+sh,2) gv(2,2+sh,2)
  grv_.gvmarkflag=grv_.super=0
  gnum=sv
  rasterlines()
}
proc b () { rewt() time() a() }

//** init - called @ start of run
proc init () { 
  initMisc1()
  vseed_stats(392426)
  finitialize() 
  cvode.re_init()
}

//** initrr - for doing a rerun - not used right now
proc initrr () { 
  rewt()
  col.intf.global_init()
  NStim[0].global_init()
  vseed_stats(392426)
}

//** setMemb - nothing here
proc setMemb () {}

//** initMisc1
proc initMisc1 () { local i
  col.intf.global_init()
  jrtm_INTF6=500
  if(randrun==0) for i=0,numcols-1 col[i].cstim.initrands()
}

objref ww // global ww for post processing
{wwht_INTF6=1 wwwid_INTF6=100}
//** wrecon - setup LFP recording, one LFP for each COLUMN
proc wrecon () { local cdx,ii,x localobj tl,vit,co,st
  {tl=new List() st=new String()}
  for ltr(co,lcol,&cdx) { // Fields for SU only, SU but no spikes
    sprint(st.s,"%s_LFP",co.name)
    printlist.append(vit=new vitem(st.s,tstop/vdt_INTF6,vdt_INTF6)) // make a vitem for each LFP
    tl.append(vit.vec)
  }
  for ltr(tl) XO.resize(tstop/vdt_INTF6+10) // resize recording Vectors to sim duration
  for ltr(co,lcol,&x) { // for each COLUMN, set which cells contribute to LFP
    if(co.id==0) co.intf.initwrec(tl) // done once globally
    for ii=0,co.ce.count-1 if(!ice(co.ce.o(ii).type)) co.ce.o(ii).wrc(x) // only E cells contribute to LFP
  }
}

proc wreconlfp () { local cdx,ii,x,ct,cnt localobj tl,vm
  tl=new List()
  for cdx=0,numcols-1 {
    {nqsdel(nqLFP[cdx])}
    if(sepflds) nqLFP[cdx]=new NQS("E2","E4","E5","E6","LFP") else {nqLFP[cdx]=new NQS(1) nqLFP[cdx].s[0].s="LFP"}
    {nqLFP[cdx].v.resize(tstop/vdt_INTF6) nqLFP[cdx].pad()}
    for ii=0,nqLFP[cdx].m-1 tl.append(nqLFP[cdx].v[ii])
  }
  {vm=new Vector(CTYPi) vm.x(E2)=0 vm.x(E4)=1 vm.x(E5R)=vm.x(E5B)=2 vm.x(E6)=3}
  col.intf.initwrec(tl)
  for x=0,numcols-1 {
    for case(&ct,E2,E4,E5R,E5B,E6) {
      for ii=col[x].ix[ct],col[x].ixe[ct] {
        if(sepflds) {
          col[x].ce.o(ii).wrc(vm.x(ct)+x*5)
          col[x].ce.o(ii).wrc(4+x*5)
        } else col[x].ce.o(ii).wrc(x)
      }
    }
  }
}

//** wrecoff - turn off LFP recording
proc wrecoff () { local ct
  for ctt(&ct) for ixt(ct) XO.wrec(0)
}

//** finishMisc - called @ end of run()
func finishMisc () { local ii localobj co
  for ltr(XO,printlist) if (isassigned(XO.o)) if (XO.o.fflag) XO.o.fini
  // if(0) panobj.pvplist(ofile,params,100) //dont save printlist for now
  col.intf.global_fini
  for ltr(co,lcol) co.intf.spkstats2(1)
  print "TMAX: ",tmax_INTF6
  return 1
}

//** snapsv() save after printlist items min-max to fixed dt
proc snapsv () { local a,vdt,min,max localobj v1,o
  grv_.bst(3,3)
  vdt=0.2 
  a=allocvecs(v1)
  v1.resize(tstop/vdt)
  for ltr(o,printlist) { 
    if (o.code!=3) continue
    v1.snap(o.vec,o.tvec,vdt)
    o.vec.copy(v1)
    o.pstep=vdt
    o.tvflag=0
  }
  if (numarg()==0) grv_.pvall()
  dealloc(a)
}

proc exeruncall () { for ltr(XO,printlist) if (XO.code==3) XO.tvflag=1 }
proc pvout2 () { snapsv(1) }

//printlist=new List()
if(printlist==nil)printlist=new List()
proc prlclr () { localobj ce,col,intf
  for ltr(XO,printlist) {
    if (isassigned(XO.o)) if (XO.o.fflag) XO.o.recclr
  }
  //  for ltr(XO,ce) XO.wrc(-1)
  for ltr(col,lcol) {
    {ce=col.ce intf=ce.o(0)}
    for ii=0,ce.count-1 ce.o(ii).wrc(-1)
    intf.wwfree(0)
  }
  printlist.remove_all
}

//** prl(recv,recs[,lvextra]) - setup recording in printlist
//$1  = whether to record any cell voltages, default off
//$2  = whether to record spike times, default on
//$o3 = extra cells to record. lv.o(0)=cell,lv.o(1)=param to record,etc.,optional
proc prl () { local a,x,cidx,ii,jj,offst,y,recv,recs,max localobj xo,lvextra,co,ce
  if(numarg()>0) recv=$1 else recv=0
  if(numarg()>1) recs=$2 else recs=1
  if(numarg()>2) lvextra=$o3 else lvextra=nil
  {offst=0 prlclr()}
  for ltr(co,lcol,&ii) {
    {ce=co.ce intf=co.intf}
    if (recs) { sprint(tstr,"%s_SPKS",co.name)
      if (intf.flag("jcn")) { // for use with jitcon()
        printlist.append((vit[ii]=new vitem(tstr,2e6,1)))
        intf.jitrec(vit[ii].vec,vit[ii].tvec)
      } else {
        intf.jitrec() // clear jit recording
        for ltr(xo,ce,&y) {
          if (y==0) vit[ii]=new_printlist_nc(xo, xo.id, tstr) else {
            new_printlist_nc2(vit[ii], xo, xo.id)        }
        }
      }
    }
    npacsz=20
    if (recv && ce.count>0) for case(&x,E4,E2,E5R,E5B,I2,I5) {
      if (co.numc[x]>2) max=0 else max=co.numc[x]-1
      for jj=0,max {
        XO=ce.object(co.ix[x]+jj)
        XO.recclr
        new_printlist_ac(XO,"V",  CTYP.o(x).s,XO.id)
        // new_printlist_ac(XO,"VGB",  CTYP.o(x).s,XO.id)
        // new_printlist_ac(XO,"VGA",  CTYP.o(x).s,XO.id)
        // new_printlist_ac(XO,"AHP",  CTYP.o(x).s,XO.id)
        //      printlist.o(printlist.count-1).code=3 // use code 3 for snapping
        // XO=ce.object(ixe[x]-jj-1)
        // XO.recclr
        // new_printlist_ac(XO,"V",  CTYP.object(x).s,XO.id)
      }
    }
    if(lvextra!=nil){
      for(jj=0;jj<lvextra.count;jj+=2){ XO=lvextra.o(jj)
        new_printlist_ac(XO,lvextra.o(jj+1).s,CTYP.object(ctyp(XO.id)).s,XO.id)
      }
    }
  }
  wrecon()
}

obfunc md5 () { localobj aq
  batch_flag=1
  if (numarg()>0) tstr=$s1 else tstr="aa"
  aq=new NQS("t","i")   aq.scpflag=1 aq.setcols(printlist.o(0).tvec,printlist.o(0).vec)
  aq.sort("i") aq.sort("t") aq.listvecs()
  prveclist(tstr,aq.vl)
  sprint(tstr,"md5sum %s",tstr) system(tstr)
  batch_flag=0
  return aq
}

//** rub() -- multi-run with saving to veclist
// saves vspks(1), SM(2), SU(2), IN(2)
proc rub () { local ii localobj so
  so=new String()
  clrveclist()
  for ii=0,9 {
    sprint(so.s,"%d",ii)
    shuffle(vspks)
    savevec(vspks)
    time()
    savevec(printlist.object(0).vec,printlist.object(0).tvec)
    savevec(printlist.object(1).vec,printlist.object(1).tvec)
    savevec(printlist.object(2).vec,printlist.object(2).tvec)
  }
}

//** spri(#) puts up graph of just one class
// 0->SM 1->SU 2->IN
// map 0,1,2 onto 1,3,5 ii*2+1
proc spri () { local ii,a,jj
  a=allocvecs(1)  ge(0)
  for ii=0,9 { jj=7*ii+$1*2+1
    mso[a].copy(veclist.object(jj))
    mso[a].add(1.5*ii*(mso[a].max-mso[a].min)-mso[a].min)
    mso[a].mark(g,veclist.object(jj+1),"O",4,cg(ii))
  }
}
//** sprj(#) puts up SM,SU,IN for 1 run (cp a() above)
proc sprj () { local ii,jj
  jj=7*$1+1
  for ii=0,2 veclist.object(jj+ii*2).mark(g,veclist.object(jj+ii*2+1),"O",2,cg(ii))
}
 
flddur=celdur=1000
splshhsz=0.4
objref slicepictypes
slicepictypes=new Vector()
slicepictypes.append(0,3,2)
stopoq_INTF6=1

proc rer () { 
  intf.resetall
  prl()
  shock()
  srun()
}

proc turnoff () { local cel0,cel1,off
  cel0=$1 cel1=$2
  if (argtype(3)==0) off=$3 else off=0
  ind.indgen(ix[cel0],ixe[cel0],1) vec.indgen(ix[cel1],ixe[cel1],1) 
  intf.turnoff(ind,vec,off)
}

//** turn off intralaminar connections
proc intralamoff () { local ct
  for ctt(&ct) if(numc[ct] && div[ct][ct][0]) turnoff(ct,ct)
}

//** turn on intralaminar connections
proc intralamon () { local ct
  for ctt(&ct) if(numc[ct] && div[ct][ct][0]) turnoff(ct,ct,1)
}

load_file("spkts.hoc")
objref snq,fnq,anq,cvnq
//get CVPNQS
proc getcvnq () {
  if(cvnq!=nil)nqsdel(cvnq)
  if(numarg()==0) cvnq=CVPNQS(snq,1,1,0)
  if(numarg()==1) cvnq=CVPNQS(snq,$1,1,0)
  if(numarg()==2) cvnq=CVPNQS(snq,$1,$2,0)
  if(numarg()==3) cvnq=CVPNQS(snq,$1,$2,$3)
}
//get PActNQS
proc getanq () {
  if(anq!=nil)nqsdel(anq)
  if(numarg()==0) {
    anq=PActNQS(snq)
  } else if(numarg()==1) {
    anq=PActNQS(snq,$1) 
  } else if(numarg()==2) {
    anq=PActNQS(snq,$1,$2) 
  }
}
//get SpikeNQS
proc getsnq () {
  if(snq!=nil)nqsdel(snq)
  snq=SpikeNQS(printlist.o(0),0)
}
//get SpikeNQS,FreqNQS
proc getsfnq () {
  getsnq()
  if(fnq!=nil)nqsdel(fnq)
  fnq=FreqNQS(snq,20,1,0)
}
//display & print average vals of snq,fnq
proc dispfnq () { local ct
  fnq.verbose=0
  for ctt(&ct) {
    fnq.select("Type",ct,"StartT","<=",tmax_INTF6)
    printf("%s mean F = %g Hz\n",CTYP.o(ct).s,fnq.getcol("Freq").mean)
    fnq.gr("Freq","EndT",0,clr,1)
    clr+=1
  }
}
//draw a black box showing stim duration
proc dispsgrdur () {
  if(g==nil)gg()
  drline(0,0,0,$1,g,1,4)
  drline(sgrdur,0,sgrdur,$1,g,1,4)
  drline(0,$1,sgrdur,$1,g,1,4)
  drline(0,0,sgrdur,0,g,1,4)
}
//draw $2 cell type in $3 color from PActNQS $o1
proc dispPActNQ () { local ct,color localobj anq,str  
  anq=$o1 ct=$2 color=$3 str=new String() str.s="act"
  if(numarg()>3)str.s=$s4
  anq.select("ct",ct)
  gvmarkflag=0
  anq.gr(str.s,"ts",0,color,9)
  gvmarkflag=1
  anq.gr(str.s,"ts",0,color,10)
  gvmarkflag=0
}
//get nqs with prumat info
obfunc getprnq () { local prty,poty localobj prnq
  prnq=new NQS("prty","poty","pr")
  for ctt(&prty) for ctt(&poty) if(prumat[prty][poty]!=0) prnq.append(prty,poty,prumat[prty][poty])
  return prnq
}
//get nqs with sprmat info
obfunc getsprnq () { local prty,poty localobj sprnq
  sprnq=new NQS("prty","poty","spr")
  for ctt(&prty) for ctt(&poty) if(sprmat[prty][poty]!=0) sprnq.append(prty,poty,sprmat[prty][poty])
  return sprnq
}

//rerun sim from nqs -- use :
// objref nqn
//nqn=new NQS("/u/samn/vcortex/data/08nov7_dodviptbatch_NORMUNIFNEGEXPDVFIXED_S0_399_eg2p15_update.nqs")
//rernqs(nqn,rowid)
proc rernqs () { local s,tm,ix,w localobj iq,wmnq
  iq=$o1 ix=$2 // ix will be row num in the NQS
  w=iq.fi("wght")
  s=iq.get("s",ix).x setdviPT=iq.get("setdviPT",ix).x tm=iq.get("tmax",ix).x 
  EGain=iq.get("EGain",ix).x IGain=iq.get("IGain",ix).x sgrdur=iq.get("sgrdur",ix).x
  if(iq.fi("vsgrpp")!=-1)vsgrpp=iq.get("vsgrpp",ix).o
  if(iq.fi("vsgrsidx")!=-1)vsgrsidx=iq.get("vsgrsidx",ix).o
  if(iq.fi("wght")!=-1){
    wmnq=iq.get("wght",ix).o setwt(wmnq)
  } else {
    setwt()
  }
  setdvi(s)
  stim()
  print "\nSim should run out to tmax=",tm
  time()
}

//* function calls
prl(0,1)

Lytton WW, Neymotin SA, Wester JC, Contreras D (2011) Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training

References and models cited by this paper

References and models that cite this paper

Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci U S A 83:3513-7 [PubMed]

Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992-8 [PubMed]

Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133-6 [PubMed]

Buonomano DV (2009) Harnessing chaos in recurrent neural networks. Neuron 63:423-5 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blumcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54:847-59; discussion 859-60 [PubMed]

Cohen-Gadol AA, Stoffman MR, Spencer DD (2003) Emerging surgical and radiotherapeutic techniques for treating epilepsy. Curr Opin Neurol 16:213-9 [PubMed]

Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M (2004) Computational physiology and the Physiome Project. Exp Physiol 89:1-26 [PubMed]

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777-82 [PubMed]

Dubitzky W (2006) Understanding the computational methodologies of systems biology. Brief Bioinform 7:315-7 [PubMed]

Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20:826-36 [PubMed]

   [48 reconstructed morphologies on NeuroMorpho.Org]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830-7 [PubMed]

Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178-82 [PubMed]

Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD, Bergey GK (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560-7 [PubMed]

Lesser RP, Crone NE, Webber WR (2010) Subdural electrodes. Clin Neurophysiol 121:1376-92

Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223-9 [PubMed]

Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073-81 [PubMed]

Lytton W, Hellman K, Sutula T (1996) Computer network model of mossy fiber sprouting in dentate gyrus Epilepsia-aes Proceedings 37 S 5:117

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Methods 171:309-15 [Journal] [PubMed]

   The virtual slice setup (Lytton et al. 2008) [Model]

Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175-81 [PubMed]

   Tonic-clonic transitions in a seizure simulation (Lytton and Omurtag 2007) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18:33-44 [PubMed]

Morrell F, Whisler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231-9 [PubMed]

Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200-10 [PubMed]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB (2001) An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol 18:533-44 [PubMed]

Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621-7 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in the Mammalian cortex. Phys Rev Lett 94:028103-92

Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31 Suppl 2:S1-6

Schramm J, Aliashkevich AF, Grunwald T (2002) Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 97:39-47 [PubMed]

Schulz R, Hoppe M, Boesebeck F, Gyimesi C, Pannek HW, Woermann FG, May T, Ebner A (2011) Analysis of reoperation in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:89-97; discussion 97 [PubMed]

Spencer SS, Schramm J, Wyler A, O'Connor M, Orbach D, Krauss G, Sperling M, Devinsky O, Elger (2002) Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 43:141-5 [PubMed]

Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5:121-34 [PubMed]

Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106:12162-7

Ty L, Yorke J (1975) Period three implies chaos Amer Math Monthly 82:985-992

Wyler AR (1997) Recent advances in epilepsy surgery: temporal lobectomy and multiple subpial transections. Neurosurgery 41:1294-301; discussion 1301-2 [PubMed]

Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37:982-90; discussion 990-1 [PubMed]

Yogarajah M, Focke NK, Bonelli SB, Thompson P, Vollmar C, McEvoy AW, Alexander DC, Symms MR, (2010) The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 133:2348-64 [PubMed]

(41 refs)