Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)

 Download zip file   Auto-launch 
Help downloading and running models
This model is an extension of a model (<a href="">138379</a>) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
1 . Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell;
Channel(s): I Chloride; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Deep brain stimulation; Information transfer; Brain Rhythms;
Implementer(s): Lytton, William [billl at]; Neymotin, Sam [samn at]; Kerr, Cliff [cliffk at];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; I Chloride; I Sodium; I Potassium; Gaba; Glutamate;
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
staley.mod *
stats.mod *
vecst.mod *
decmat.hoc *
decnqs.hoc *
default.hoc *
drline.hoc *
infot.hoc *
local.hoc *
misc.h *
ratlfp.dat *
setup.hoc *
simctrl.hoc *
spkts.hoc *
staley.hoc *
stats.hoc *
stdgui.hoc *
syncode.hoc *
updown.hoc *
xgetargs.hoc *
// This is a collection of scripts for adding flexible input to
// intfcol. It uses the lfpstim function that Bill
// wrote, plus an adaptation of "sgrcells" from col.hoc.
// Version: 2011may19 by cliffk

// This function adds an arbitrary Poisson input to a particular
// population or populations of cells. It calls poistim followed
// by stimadd.
// Usage:
//   poisadd(signal,timei,timef,freq,cellpop,cellprct,cellwt,whichsy)
// where
//   signal describes the probability of a spike at a given time (e.g. a 10K-element sine wave)
//   timei is the start time of the stimulus (in ms, e.g. 2e3)
//   timef is the end time of the stimulus (in ms, e.g. 5e3)
//   freq is the number of spikes (in Hz, e.g. 10) (note: signal.size() must be greater than (timef-timei)*freq!)
//   pop is a vector of cell populations (e.g. [E2,E4,E5])
//   cellwt is the weight given to each spike  (e.g. 1e9)
//   whichsy is the synapse used (e.g. AM2)
// Version: 2011may20

proc poisadd () { local timei,timef,freq,cellprct,cellwt,whichsy,npops,cellstart,cellfinish,pickthiscell localobj pickcell,signal,cellpop,spkoutput
  pickcell=new Random() //
  signal=$o1 // Signal to base the Poisson spike train on
  timei=$2 // Start time of signal
  timef=$3 // End time of signal
  freq=$4 // Frequency/rate of the signal
  cellpop=$o5 // Cell populations to add signal to
  cellprct=$6 // Percent of cells to stimulate in each population
  cellwt=$7 // Weight of each synapse
  whichsy=$8 // Type of each synapse
  npops=cellpop.size() // Number of cell populations
  for h=0,numcols-1 { // Loop over columns
    for i=0,npops-1 { // Loop over each cell population
	   	cellstart=col[h].ix[cellpop.x[i]] // Starting cell index
	  	cellfinish=col[h].ixe[cellpop.x[i]] // Finishing cell index
	  	for cellid=cellstart,cellfinish { // Loop over each cell in the population
	  		pickthiscell=100*pickcell.repick() // Whether or not to pick this cell
	  		if(cellprct>pickthiscell) { // Pick out cellprct percent of cells
	  			thisseed=7829*cellid+24091*i+251 // Create a pseudorandom seed
	  			spkoutput=poistim(signal,timei,timef,freq,thisseed) // Calculate Poisson train
/*  col[h].cstim.pushspks() // Test -- stim wasn't having any effect before*/

// POISTIM -- arbitrary Poisson generator
//** spktimevec = poistim(signal,timei,timef,freq)
// signal is vector giving the input signal - eg LFP
// timei gives the initial time time of the signal
// timef gives the final time of the signal, thus timespan is timef-timei
// freq gives the target freq for the spike train -- this is approximate
// Example: 
// objref signal, spktimevec
// signal=new Vector()
// signal.indgen(0.1,0.9,0.001)
// spktimevec=poistim(signal,10,5)
// spktimevec.size() = 50
// Note: the number of points in "signal" must be equal to or greater than the number of spikes!
// Version: 2011may20
obfunc poistim () { local a,timei,timef,thisseed localobj signal,v1,v2,vt
  signal=$o1 timei=$2 timef=$3 freq=$4 thisseed=$5 // Handle input arguments: signal
  a=allocvecs(v1,v2) // Allocate vectors
  vt=new Vector(signal.size) // but ((timef-timei)*freq) is number of spikes desired in period
  vt.setrnd(4,thisseed) // seed for 0-1
  v1.copy(signal) v1.inv()
  vt.mul(v1) // scale the intervals by the signal
  vt.integral() // turn intervals into times
  v1.setrnd(6,0,vt.size-1,thisseed) // rand unique indices; to cull to get only (maxt*freq/1e3)
  v2.index(vt,v1) // pick the times randomly
  vt.add(timei) // Add start time
  return vt

// STIMADD -- add stimulus to the input list for a single cell
// This function, based on sgrcells, adds an arbitrary
// stimulus to the rest of the input NQS table vq.
// Usage:
//	 stimadd(times,cellid,cellwt,whichsy)
// where
//	 times is a length-N vector of spike times (e.g. 0, 1.34, 2.53, 7.34, 7.45)
//	 cellid is the cell ID (e.g. 142)
//   cellwt is the synaptic weight (e.g. 1e9)
//   whichsy is the synapse type (e.g. AMPA)
// Version: 2011may20
proc stimadd () { local cellid,cellwt,whichsy,npts,ii,foo localobj times,vqtmp
   if (vq==nil) vq=new NQS("ind","time","cellwt","whichsy") // Initialize NQS to store spikes
   vqtmp=new NQS("ind","time","cellwt","whichsy")
   times=$o1 // Incoming spike times (e.g. 0, 1.34, 2.53, 7.34, 7.45)
   cellid=$2 // Cell ID (e.g. 142)
   cellwt=$3 // Synaptic weights (e.g. 1e9)
   whichsy=$4 // Synapse type (e.g. AMPA)
   npts=times.size() // Find the number of points
   for ii=0,3 vqtmp.v[ii]=new Vector(npts) // Initialize vectors
   vqtmp.v[0].fill(cellid) // Assign the cell ID
   vqtmp.v[1]=times // Assign the times to the second column
   vqtmp.v[2].fill(cellwt) // Assign weights
   vqtmp.v[3].fill(whichsy) // Assign synapse type
   vqtmp.pad() // Shouldn't be necessary, but it is -- make sure all columns are the same size
   vq.append(vqtmp) // Append to original array -- won't take effect until pushspks() call, however
   nqsdel(vqtmp) // Garbage collection

Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60[PubMed]

References and models cited by this paper

References and models that cite this paper

Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155-60 [PubMed]

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Cui J, Xu L, Bressler SL, Ding M, Liang H (2008) BSMART: a Matlab-C toolbox for analysis of multichannel neural time series. Neural Netw 21:1094-104 [PubMed]

Francis JT, Xu S, Chapin JK (2008) Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. J Neurophysiol 99:2291-304 [PubMed]

Gisiger T, Boukadoum M (2011) Mechanisms Gating the Flow of Information in the Cortex: What They Might Look Like and What Their Uses may be. Front Comput Neurosci 5:1-304 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Kamiński M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145-57 [PubMed]

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [PubMed]

Lizier JT, Heinzle J, Horstmann A, Haynes JD, Prokopenko M (2011) Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. J Comput Neurosci 30:85-107

Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson's disease: effect of L-dopa therapy. J Pharmacol Exp Ther 195:453-64 [PubMed]

Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Methods 171:309-15 [Journal] [PubMed]

   The virtual slice setup (Lytton et al. 2008) [Model]

Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175-81 [PubMed]

   Tonic-clonic transitions in a seizure simulation (Lytton and Omurtag 2007) [Model]

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Meyer JS, Obara K, Muramatsu K (1993) Diaschisis. Neurol Res 15:362-6 [PubMed]

Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci. 30(1):69-84 [Journal] [PubMed]

   Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010) [Model]

Quilodran R, Gariel MA, Markov NT, Falchier A, Vezoli J, Sallet J, Anderson JC, Dehay C, Doug (2008) Strong loops in the neocortex Society for Neuroscience Abstracts 853.4

Rasche D, Rinaldi PC, Young RF, Tronnier VM (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21:E8

Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039-49 [PubMed]

Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600-3 [PubMed]

Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Biosci 6:D672-84

Shipp S (2005) The importance of being agranular: a comparative account of visual and motor cortex. Philos Trans R Soc Lond B Biol Sci 360:797-814 [PubMed]

Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scar (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130:1596-607 [PubMed]

Stoerig P, Cowey A (1997) Blindsight in man and monkey. Brain 120 ( Pt 3):535-59 [PubMed]

Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et al (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts J Neurophysiol 93(4):2194-232 [Journal] [PubMed]

   A single column thalamocortical network model (Traub et al 2005) [Model]
   Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) [Model]

Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419-23 [PubMed]

Von_monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [Journal] [PubMed]

   Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014) [Model]

Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW (2016) Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front. Neurosci. Neuroprosthetics 10:28 [Journal]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Dura-Bernal S, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW (2017) Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development (Computational Neuroscience special issue) 61(2/3):6:1-6:14 [Journal]

   Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017) [Model]

Dura-Bernal S, Zhou X, Neymotin SA, Przekwas A, Francis JT, Lytton WW (2015) Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm. Front Neurorobot 9:13 [Journal] [PubMed]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson's disease: a composite network-field model. Front Comput Neurosci 7:39:1-14 [Journal] [PubMed]

   Composite spiking network/neural field model of Parkinsons (Kerr et al 2013) [Model]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]

   Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]

   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]

(38 refs)