Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:141505
This model is an extension of a model (<a href="http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=138379">138379</a>) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
Reference:
1 . Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell;
Channel(s): I Chloride; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Deep brain stimulation; Information transfer; Brain Rhythms;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Kerr, Cliff [cliffk at neurosim.downstate.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; I Chloride; I Sodium; I Potassium; Gaba; Glutamate;
/
neuroprosthesis
README
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
staley.mod *
stats.mod *
vecst.mod *
batch.hoc
boxes.hoc
bsmart.py
col.hoc
comparecausality.py
comparerasters.py
declist.hoc
decmat.hoc *
decnqs.hoc *
decvec.hoc
default.hoc *
drline.hoc *
filtutils.hoc
flexinput.hoc
grvec.hoc
infot.hoc *
init.hoc
intfsw.hoc
labels.hoc
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc
nqsnet.hoc
nrnoc.hoc
params.hoc
pyhoc.py
ratlfp.dat *
run.hoc
runsim
setup.hoc *
simctrl.hoc *
spkts.hoc *
staley.hoc *
stats.hoc *
stdgui.hoc *
syncode.hoc *
updown.hoc *
xgetargs.hoc *
                            
// $Id: infot.hoc,v 1.43 2009/12/04 01:25:55 samn Exp $ 

print "Loading infot.hoc..."

if(!installed_infot) {install_infot()}

//* tentropsig(v1,v2,nshuf,nbins,twoway,[xpast,ypast,hval])
//significance test of transfer entropy using shuffling
//returns (te - tes) / sds , where te is transfer entropy, tes is transfer entropy
//of shuffled data, sds is std-dev of transfer entrop of shuffled data
//should only accept as significanat values > 4-6
func tentropsig () { local nshuf,i,xp,yp,hv,nbins,te localobj v1,v2,vo
  v1=new Vector() v2=new Vector() vo=new Vector(1)
  v1.copy($o1) v2.copy($o2) nshuf=$3 nbins=$4
  if(numarg()>4) xp=$5 else xp=1
  if(numarg()>5) yp=$6 else yp=2
  if(numarg()>6) hv=$7 else hv=0
  te=v1.tentrop(v2,nbins,xp,yp,nshuf,vo,hv)
  if(1||verbose_infot>2) printf("te=%g,sig=%g\n",te,vo.x(0))
  return vo.x(0)
}

//** mutinfbshufv(v1,v2,[nshuf,nbins])
//return vector with mutual information from shuffled v1,v2
//used for significance test , i.e. : ((miorig - mishufmean) / mishufstdev) > 2
obfunc mutinfbshufv () { local nshuf,nbins,i localobj v1,v2,ve
  v1=new Vector() v2=new Vector() ve=new Vector()
  v1.copy($o1) v2.copy($o2)
  if(numarg()>2) nshuf=$3 else nshuf=20
  if(numarg()>3) nbins=$4 else nbins=10
  for i=0,nshuf-1 {
    v1.shuffle() v2.shuffle()
    ve.append(v1.mutinfb(v2,nbins))
  }
  return ve
}

//** mutinfbsig(v1,v2,[nshuf,nbins])
//get significance of mutual information, should be at least > 2
func mutinfbsig () { local nshuf,nbins,st localobj ve
  if(numarg()>2) nshuf=$3 else nshuf=20
  if(numarg()>3) nbins=$4 else nbins=10
  ve=mutinfbshufv($o1,$o2,nshuf,nbins)
  st=ve.stdev
  if(st<=0) st=1
  return ($o1.mutinfb($o2,nbins) - ve.mean) / st
}

//** tentropspksig(v1,v2,nshuffles)
//get significance of tentropspks using shuffling
//returns (TE - AvgTEShuffle) / StdDevTEShuffle
func tentropspksig () { local nshuf,i,xp,yp,hv,nbins,te,sd localobj v1,v2,ve
  v1=new Vector() v2=new Vector() ve=new Vector()
  v1.copy($o1) v2.copy($o2) nshuf=$3
  te=$o1.tentropspks($o2)
  for i=0,nshuf-1 {
    v1.shuffle()     ve.append(v1.tentropspks(v2))
  }
  if(verbose_infot>2) printf("te=%g,ve.mean=%g,ve.stdev=%g\n",te,ve.mean,ve.stdev)
  if(verbose_infot>2) ve.printf
  sd=ve.stdev()
  if(sd<=0)sd=1
  return (te-ve.mean)/sd
}

//* normte() get normalized transfer entropy using tentropspks in output vector vo
//vo.x(0)=transfer entropy of $o1->$o2
//vo.x(1)=H($o2Future|$o2Past)
//vo.x(2)=normalized transfer entropy in 0,1 range
//$3==number of shuffles
//$o1,$o2 should both have same size and non-negative values. this func is meant for time-binned spike train data
obfunc normte () { local a localobj ve,vo
  a=allocvecs(ve) vo=new Vector()
  nshuf=0
  nshuf=$3 vrsz(3+nshuf,vo) 
  te=$o1.tentropspks($o2,vo,nshuf)
  if(verbose_infot>2) vo.printf
  if(vo.x(1)<=0 && verbose_infot>0){printf("WARNING H(X2F|X2P)==%g<=0\n",vo.x(1)) vo.x(1)=1 }
  if (nshuf>0) {
    ve.copy(vo,3,vo.size-1)
    vo.resize(4)
    if (ve.mean!=vo.x[2]) printf("normte ERRA\n")
    vo.append(ve.stdev)
  } 
  vo.x[2]=te
  dealloc(a)
  return vo
}

//* GetTENQ() get an nqs with useful transfer entropy info
obfunc GetTENQ () { local te01,te10,pf01,pf10 localobj nqte,vo1,vo2
  if(numarg()>3) nqte=$o4
  if(nqte==nil) {
    nqte=new NQS("from","to","TE","NTE","HX2|X2P","prefdir","TEshufavg","TEshufstd","sig")
  } else nqte.clear()
  vo1=normte($o1,$o2,$3)
  vo2=normte($o2,$o1,$3)
  te01=vo1.x(2)
  te10=vo2.x(2)
  if(vo1.x(4)<=0)vo1.x(4)=1
  if(vo2.x(4)<=0)vo2.x(4)=1
  if(te01>0 || te10>0) {
    pf01=(te01-te10)/(te01+te10)
    pf10=(te10-te01)/(te01+te10)
  } else {
    pf01=pf10=0
  }
nqte.append(0,1,vo1.x(0),te01,vo1.x(1),pf01,vo1.x(3),vo1.x(4),(vo1.x(0)-vo1.x(3))/vo1.x(4))
nqte.append(1,0,vo2.x(0),te10,vo2.x(1),pf10,vo2.x(3),vo2.x(4),(vo2.x(0)-vo2.x(3))/vo2.x(4))
  return nqte
}

//** prefdte() get preferred direction of transfer entropy
//$o1=vec 1, $o2=vec 2, $3 = # of times to shuffle
func prefdte () { local nshuf,a,te01,te10,pfd localobj v1,v2,vtmp
  a=allocvecs(v1,v2,vtmp)
  v1.copy($o1) v2.copy($o2) nshuf=$3 vtmp.resize(3)
  v1=normte($o1,$o2,nshuf)
  v2=normte($o2,$o1,nshuf)
  te01=v1.x(2)
  te10=v2.x(2)
  pfd=(te01-te10)/(te01+te10)
  dealloc(a)
  return pfd
}

//** mkchist() averages entries in window into disc values and returns in new output vec
//$o1=input vec,$2=win size
obfunc mkchist () { local idx,eidx,wsz localobj vin,vout
  vin=$o1 wsz=$2 vout=new Vector() 
  vout.resize(1+vin.size/wsz) vout.resize(0)
  for(idx=0;idx<=vin.size;idx+=wsz) {
    eidx=idx+wsz-1
    if(eidx>=vin.size)eidx=vin.size-1
    if(eidx>idx) vout.append( int(vin.mean(idx,eidx)) )
  }
  return vout
}

//get magnitude of difference in a preferred direction - just abs of diff, but if theyre both neg, return 0
//$1 = nTE_X->Y
//$2 = nTE_Y->X
func prefdmag () { local n1,n2,s
  n1=$1 n2=$2
  if(n1>0 && n2<=0) return n1-n2 //n1 is relatively strong
  if(n2>0 && n1<=0) return n2-n1 //n2 is relatively strong
  if(n2<0 && n1<0) return 0      //both are weak
  return abs(n1-n2)              //both are weak positive
}


//** simple test for nte
{declare("vb","o[2]","vs","o[2]")}
for i=0,1 {
  vb[i]=new Vector()
  vs[i]=new Vector()
}

//mkspktrain(Random,rate,tmax) -- make a spike train with specified rate,tmax
//Random obj must be initialized
obfunc mkspktrain () { local tmax,rate,t,dt,intt localobj rdp,vs
  rdp=$o1 rate=$2 tmax=$3
  intt=1e3/rate
  t = 0
  vs=new Vector()
  while(t<=tmax) {
    dt = rdp.poisson(intt)
    t += dt
    vs.append(t)
  }
  return vs
}

//make random spikes with frequency $1, tmax=$2, offset for spikes=$3, alpha=$4 -- ratio of spikes from
//vs[0] that get placed in vs[1] 
//spikes in vs[0] are randomly picked, spikes in vs[1] are same as in vs[0] but shifted forward by $3 offset
//so vs[0] 'drives' vs[1], or can be used to predict it, but vs[1] cant be used to predict vs[0]
proc mkspks () { local tmax,rate,t,dt,intt,off,i,alpha localobj rdp
  rate=$1 tmax=$2 off=$3 
  if(numarg()>3)alpha=$4 else alpha=1
  intt=1e3/rate
  rdp=new Random()
  rdp.ACG(1234)
  rdp.poisson(intt)
  for i=0,1 vs[i].resize(0)
  vs[0]=mkspktrain(rdp,rate,tmax)
  if(alpha < 1.0) {
    for vtr(&t,vs[0]) if(rdp.uniform(0,1) <= alpha) vs[1].append(t+off)
  } else {
    vs[1].copy(vs[0])
    vs[1].add(off)
  }
}
//test nTE : nTE of X0 -> X1 should be much higher than nTE of X1 -> X0
//optional $1=offset == offset to shift spikes by, in ms
//optional $2=rate == rate of spikes, in Hz
//optional $3=bin size , in ms
//optional $4=alpha == ratio of spikes of X0 that get placed in X1 with offset
//optional $5=max time, in ms
func testnte () { local a,i,bisv,maxt,alpha,off,rate,binsz,dur  localobj nqt,nqout
  if(numarg()>0)off=$1 else off=10
  if(numarg()>1)rate=$2 else rate=50
  if(numarg()>2)binsz=$3 else binsz=10
  if(numarg()>3)alpha=$4 else alpha=1
  if(numarg()>4)dur=$5 else dur=10000
  bisv=binmin_infot binmin_infot=0
  print "output should be close to:\n\t0 1 0.6707 0.9975 0.6707 0.9407 0.003435 0.001672 399.1"
  print "\t1 0 0.02183 0.03049 0.6685 -0.9407 0.002828 0.001442 13.17"
  mkspks(rate,dur,off,alpha)
  maxt=vs[1].max
  printf("maxt=%g\n",maxt)
  if(vs[1].max>maxt)maxt=vs[1].max
  for i=0,1 vb[i].hist(vs[i],0,(maxt+binsz-1)/binsz,binsz)
  nqt=GetTENQ(vb[0],vb[1],200) 
nqout=new NQS("X1","X2")
nqout.odec("X1")
nqout.odec("X2")
batch_flag=1
nqout.append(vb[0],vb[1])
nqout.sv("/u/samn/bpftest/data/09dec17.func.testnte.nqs")
batch_flag=0
  nqt.pr
  nqsdel(nqt)
  binmin_infot=bisv
  return 1
}

//get kernel smoothed prob distrib in an nqs
//$o1=input vector
//$2=increment in x , smaller values mean finer resolution
//$3=bandwidth - higher means smoother output
// $4=min value in output, $5=max value in output
obfunc khist () { local min,max,inc,h,x,i,s localobj vx,vy,nq,vin
  vin=$o1 
  if(numarg()>1)inc=$2 else inc=0.1
  if(numarg()>2)h=$3 else h=vin.getbandwidth()
  if(numarg()>3)min=$4 else min=vin.min()
  if(numarg()>4)max=$5 else max=vin.max()
  {vx=new Vector() vy=new Vector()}
  vx.indgen(min,max,inc)
  vy.copy(vx)
  for vtr(&x,vx,&i) vy.x(i) = vin.kprob1D(h,x)
  s=vy.sum 
  if(s!=0) vy.div(vy.sum)
  nq=new NQS("x","y")
  nq.v[0]=vx
  nq.v[1]=vy
  return nq
}

Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60[PubMed]

References and models cited by this paper

References and models that cite this paper

Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155-60 [PubMed]

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Cui J, Xu L, Bressler SL, Ding M, Liang H (2008) BSMART: a Matlab-C toolbox for analysis of multichannel neural time series. Neural Netw 21:1094-104 [PubMed]

Francis JT, Xu S, Chapin JK (2008) Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. J Neurophysiol 99:2291-304 [PubMed]

Gisiger T, Boukadoum M (2011) Mechanisms Gating the Flow of Information in the Cortex: What They Might Look Like and What Their Uses may be. Front Comput Neurosci 5:1-304 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Kamiński M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145-57 [PubMed]

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [PubMed]

Lizier JT, Heinzle J, Horstmann A, Haynes JD, Prokopenko M (2011) Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. J Comput Neurosci 30:85-107

Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson's disease: effect of L-dopa therapy. J Pharmacol Exp Ther 195:453-64 [PubMed]

Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Methods 171:309-15 [Journal] [PubMed]

   The virtual slice setup (Lytton et al. 2008) [Model]

Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175-81 [PubMed]

   Tonic-clonic transitions in a seizure simulation (Lytton and Omurtag 2007) [Model]

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Meyer JS, Obara K, Muramatsu K (1993) Diaschisis. Neurol Res 15:362-6 [PubMed]

Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci. 30(1):69-84 [Journal] [PubMed]

   Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010) [Model]

Quilodran R, Gariel MA, Markov NT, Falchier A, Vezoli J, Sallet J, Anderson JC, Dehay C, Doug (2008) Strong loops in the neocortex Society for Neuroscience Abstracts 853.4

Rasche D, Rinaldi PC, Young RF, Tronnier VM (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21:E8

Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039-49 [PubMed]

Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600-3 [PubMed]

Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Biosci 6:D672-84

Shipp S (2005) The importance of being agranular: a comparative account of visual and motor cortex. Philos Trans R Soc Lond B Biol Sci 360:797-814 [PubMed]

Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scar (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130:1596-607 [PubMed]

Stoerig P, Cowey A (1997) Blindsight in man and monkey. Brain 120 ( Pt 3):535-59 [PubMed]

Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et al (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts J Neurophysiol 93(4):2194-232 [Journal] [PubMed]

   A single column thalamocortical network model (Traub et al 2005) [Model]
   Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) [Model]

Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419-23 [PubMed]

Von_monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [Journal] [PubMed]

   Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014) [Model]

Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW (2016) Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front. Neurosci. Neuroprosthetics 10:28 [Journal]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Dura-Bernal S, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW (2017) Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development (Computational Neuroscience special issue) 61(2/3):6:1-6:14 [Journal]

   Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017) [Model]

Dura-Bernal S, Zhou X, Neymotin SA, Przekwas A, Francis JT, Lytton WW (2015) Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm. Front Neurorobot 9:13 [Journal] [PubMed]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson's disease: a composite network-field model. Front Comput Neurosci 7:39:1-14 [Journal] [PubMed]

   Composite spiking network/neural field model of Parkinsons (Kerr et al 2013) [Model]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]

   Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]

   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]

(38 refs)