Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:143604
A spiny dendrite model supports the hypothesis that only inhibitory inputs on spine heads, not shafts, compartmentalizes inhibition of calcium signals to spine heads as seen in paired inhibition with back-propagating action potential experiments on prefrontal cortex layer 2/3 pyramidal neurons in mouse (Chiu et al. 2013).
Reference:
1 . Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies G, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines Science 340:759-762
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal intratelencephalic L2-6 cell;
Channel(s): I Na,t; I L high threshold; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Influence of Dendritic Geometry;
Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu]; Morse, Tom [Tom.Morse at Yale.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal intratelencephalic L2-6 cell; GabaA; I Na,t; I L high threshold; I K;
/
singleDendrite
mod
ca.mod
ca_a1g.mod
ca_a1h.mod *
cad.mod
constant.mod
distr.mod *
exp2syncur.mod
exp2synsat.mod
im.mod *
kca.mod *
km.mod *
kv.mod
multiclamp.mod
na.mod
zoidsyn.mod *
                            
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal

kca.mod

Calcium-dependent potassium channel
Based on
Pennefather (1990) -- sympathetic ganglion cells
taken from
Reuveni et al (1993) -- neocortical cells

Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
	
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX kca
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE n, gk, gbar
	RANGE ninf, ntau
	GLOBAL Ra, Rb, caix
	GLOBAL q10, temp, tadj, vmin, vmax
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

PARAMETER {
	gbar = 10   	(pS/um2)	: 0.03 mho/cm2
	v 		(mV)
	cai  		(mM)
	caix = 1	
									
	Ra   = 0.01	(/ms)		: max act rate  
	Rb   = 0.02	(/ms)		: max deact rate 

	dt		(ms)
	celsius		(degC)
	temp = 23	(degC)		: original temp 	
	q10  = 2.3			: temperature sensitivity

	vmin = -120	(mV)
	vmax = 100	(mV)
} 


ASSIGNED {
	a		(/ms)
	b		(/ms)
	ik 		(mA/cm2)
	gk		(pS/um2)
	ek		(mV)
	ninf
	ntau 		(ms)	
	tadj
}
 

STATE { n }

INITIAL { 
	rates(cai)
	n = ninf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
	gk = tadj*gbar*n
	ik = (1e-4) * gk * (v - ek)
} 

LOCAL nexp

DERIVATIVE states {   :Computes state variable n 
        rates(cai)      :             at the current v and dt.
        n' =  (ninf-n)/ntau

}

PROCEDURE rates(cai(mM)) {  

        

        a = Ra * cai^caix
        b = Rb

        tadj = q10^((celsius - temp)/10)

        ntau = 1/tadj/(a+b)
	ninf = a/(a+b)

 
:        tinc = -dt * tadj
:        nexp = 1 - exp(tinc/ntau)
}












Loading data, please wait...