Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144089
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
Reference:
1 . Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN; Gaba; Glutamate;
/
PFCcell
mechanism
.AppleDouble
ampa.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
d3.mod *
gabaa.mod *
gabab.mod *
h.mod
ican.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdrD.mod *
km.mod *
naf.mod
nap.mod *
netstimmm.mod
NMDA.mod
sinclamp.mod
.directory
                            
TITLE Slow Ca-dependent potassium current
:
:   Ca++ dependent K+ current responsible for slow AHP

NEURON {
	SUFFIX kca
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE  gbar, po, ik
	GLOBAL m_inf, tau_m
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

ASSIGNED {       : parameters needed to solve DE
	v               (mV)
	celsius         (degC)
:	ek              (mV)
	cai             (mM)           : initial [Ca]i
	ik              (mA/cm2)
	po
	m_inf
	tau_m           (ms)
:	h_inf				:inactivation 
:	tau_h		(ms)
:	taumin
}

PARAMETER {
	gbar    = 10   (mho/cm2)
        ek	 	(mV)
	taumin  = 150	(ms)  :(150)
	b 	= 0.008 (/ms)  : changed oct 17, 2006 for pfc (0.3)
	:b 	= 0.8		: value for CA1 neuron(2006)
:	tau_h	= 300	(ms)
}


STATE {
	m   
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	po = m*m
	ik = gbar*po*(v - ek)    : potassium current induced by this channel
}

DERIVATIVE states {
	rates(cai)
:	m'=(-1/(tau_m))*(m-(m_inf)) 

	m' = (m_inf - m) / tau_m : old equation
:	h'=(h_inf - h)/tau_h	
	
} 


INITIAL {
	rates(cai)
	m = 0
:	m = m_inf

:	h = h_inf
}


PROCEDURE rates(cai(mM)) { 
	LOCAL a
:	a=100
:	m_inf=(a*cai*cai)/(a*cai*cai+b)
:	tau_m=(1/(a*cai*cai+b))
	
:old equations	
	a = cai/b
	m_inf = a/(a+1)
:	tau_m=600
	tau_m = taumin+ 1(ms)*1(mM)*b/(cai+b)

:inactivation
:	h_inf= ah/(ah+1)
}

Loading data, please wait...