Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144089
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
Reference:
1 . Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,Ca; I CAN; Gaba; Glutamate;
/
PFCcell
mechanism
.AppleDouble
ampa.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
d3.mod *
gabaa.mod *
gabab.mod *
h.mod
ican.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdrD.mod *
km.mod *
naf.mod
nap.mod *
netstimmm.mod
NMDA.mod
sinclamp.mod
.directory
                            
: Persistent Na+ channel

NEURON {
	SUFFIX nap
	:SUFFIX Nap
	USEION na READ ena WRITE ina
	RANGE gnabar, ina, gna
	:RANGE gnapbar, ina, gna
	RANGE DA_alphamshift,DA_betamshift
	RANGE DA_alphahfactor, DA_betahfactor
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gnabar= 0.0022 (mho/cm2) <0,1e9>
	:gnapbar= 0.0022 (mho/cm2) <0,1e9>
	ena = 55 (mV)
	DA_alphamshift=0 : 2 for 100% DA, 0 otherwise
	DA_betamshift=0  : 5 for 100% DA,0 otherwise
	DA_alphahfactor=0: -.8e-5 for DA, 0 otherwise
	DA_betahfactor=0 : 0.014286-0.02 for DA, 0 otherwise
}

STATE {
	m h
}

ASSIGNED {
	ina (mA/cm2)
	minf hinf 
	mtau (ms)
	htau (ms)
	gna (mho/cm2)
	
}

INITIAL {
	rate(v)
	m = minf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gna = gnabar*m*h
	:gna = gnapbar*m*h
	ina = gna*(v-55)
	
}

DERIVATIVE states {
	rate(v)
	m' = (minf-m)/mtau
	h' = (hinf-h)/htau
}

UNITSOFF

FUNCTION malf( v){ LOCAL va 
	va=v+12+DA_alphamshift
	if (fabs(va)<1e-04){
	 va = va + 0.00001 }
	malf = (-0.2816*va)/(-1+exp(-va/9.3))
	
}


FUNCTION mbet(v(mV))(/ms) { LOCAL vb 
	vb=v-15+DA_betamshift
	if (fabs(vb)<1e-04){
	    vb = vb + 0.00001 }

	mbet = (0.2464*vb)/(-1+exp(vb/6))

}	


FUNCTION half(v(mV))(/ms) { LOCAL vc 
	vc=v+42.8477
	if (fabs(vc)<1e-04){
	   vc=vc+0.00001 }
        half= (2.8e-5+DA_alphahfactor)*(exp(-vc/4.0248))

}


FUNCTION hbet(v(mV))(/ms) { LOCAL vd
	vd=v-413.9284
	if (fabs(vd)<1e-04){
	vd=vd+0.00001 }
        hbet= (0.02+DA_betahfactor)/(1+exp(-vd/148.2589))
 
}




PROCEDURE rate(v (mV)) {LOCAL msum, hsum, ma, mb, ha, hb
	ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)
	
	msum = ma+mb
	minf = ma/msum
	mtau = 1/msum
	
	
	hsum = ha+hb
	hinf = ha/hsum
	htau = 1/hsum
}

	
UNITSON





Loading data, please wait...