CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
template
BasalPath.hoc *
EPSPTuning.hoc *
ExperimentControl.hoc *
load_templates.hoc *
ObliquePath.hoc *
RangeRef.hoc *
SynapseBand.hoc *
                            
// For each section, create a template to store the EPSP tuned AMPA conductance values (gbar_ampa)
// for each location (range_ref) along it (used with ../lib/tune-epsp.hoc)
// written by Yiota Poirazi, July 2001, poirazi@LNC.usc.edu

begintemplate EPSPTuning

public section_ref, range_ref, gbar_ampa, section_name

objref section_ref
strdef section_name

proc init () {
  section_ref  = new SectionRef()
  section_name = $s1
  range_ref    = $2
  gbar_ampa    = $3
  if ($4) {
 //   printf ("EPSPTuning created for %s(%f)\n", section_name, range_ref)
  }
}

endtemplate EPSPTuning

Loading data, please wait...