CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
datastore
pars
plots
poirazi-nmda-car
tests
validation-plots
README.txt
ampa_forti.mod
cacum.mod
cad.mod *
cagk.mod
cal.mod
calH.mod
car.mod
car_mag.mod
cat.mod
d3.mod *
h.mod
hha_old.mod
hha2.mod
kadist.mod
kaprox.mod
kca.mod
km.mod
nap.mod
nmda_andr.mod
somacar.mod
binaverages.m
bpap-cell.hoc
bpap-data.hoc
bpap-dendburst.hoc
bpap-graphics.hoc
bpap-gui.hoc
bpap-gui.ses
bpap-pars.hoc
bpap-record.hoc
bpap-run.hoc
bpap-scaling.hoc
bpap-sims.hoc
bpap-sims-cell1.hoc
bpap-sims-cell2.hoc
bpap-sims-scaling.hoc
bpap-somainj.hoc
bpap-spiketrain.hoc
ca1_mrg_cell1.hoc
ca1_mrg_cell2.hoc
ca1_poirazi.hoc
ChannelBlocker.hoc
CrossingFinder.hoc
epspsizes.hoc
figure-example.R
figures.R
figures-common.R
FileUtils.hoc
FormatFile.hoc
ghk.inc
GraphUtils.hoc
Integrator.hoc
Makefile
mosinit.hoc
NmdaAmpaSpineSynStim.hoc
NmdaAmpaSynStim.hoc
ObjectClass.hoc
plotscalingresults_pergroup1.m
plotscalingresults5.m
PointProcessDistributor.hoc
ReferenceAxis.hoc
removezeros.m
RPlot.hoc
scaling_plots.m
Segment.hoc
SimpleSpine.hoc
Spine.hoc
TreePlot.hoc
TreePlotArray.hoc
triexpsyn.inc
units.inc
utils.hoc
validate-bpap.hoc
VarList.hoc
VCaGraph.hoc
                            
TITLE Ca L-type channel with high treshold of activation
: inserted in distal dendrites to account for distally
: restricted initiation of Ca++ spikes
: uses channel conductance (not permeability)
: written by Yiota Poirazi, 1/8/00 poirazi@LNC.usc.edu

NEURON {
	  SUFFIX calH
	  USEION ca READ eca WRITE ica
    RANGE gcalbar, m, h, g, gmax
	  RANGE inf, tau
}

UNITS {
	  (mA) = (milliamp)
	  (mV) = (millivolt)
}

PARAMETER {          : parameters that can be entered when function is called in cell-setup
    v             (mV)
    celsius = 34	(degC)
    gcalbar = 0   (mho/cm2) : initialized conductance
	  eca = 140     (mV)      : Ca++ reversal potential
}

STATE {	m h }                     : unknown activation and inactivation parameters to be solved in the DEs  

ASSIGNED {                        : parameters needed to solve DE
	  ica    (mA/cm2)
    inf[2]
	  tau[2] (ms)
    g      (mho/cm2)
    gmax   (mho/cm2)
}

BREAKPOINT {
	  SOLVE states METHOD cnexp
    g = gcalbar*m*m*m*h
	  ica = g*(v - eca)       
    if (g > gmax) {
        gmax = g
    }
}

INITIAL {
	  mhn(v)
    m = inf[0]
    h = inf[1]
	  ica = gcalbar*m*m*m*h*(v - eca) : initial Ca++ current value
}

DERIVATIVE states {	: exact when v held constant
	  mhn(v)
	  m' = (inf[0] - m)/tau[0]
	  h' = (inf[1] - h)/tau[1]
}

FUNCTION varss(v (mV), i) {
	  if (i==0) { 
        varss = 1 / (1 + exp((v+37(mV))/(-1(mV))))  : Ca activation 
	  }
	  else if (i==1) { 
        varss = 1 / (1 + exp((v+41(mV))/(0.5(mV)))) : Ca inactivation 
	  }
}

FUNCTION vartau(v (mV), i) (ms) {
	  if (i==0) {
        vartau = 3.6(ms)  : activation variable time constant
    }
	  else if (i==1) {
        :           vartau = 25   : inactivation variable time constant
        vartau = 29(ms)   : inactivation variable time constant
    }
}	

PROCEDURE mhn(v (mV)) {LOCAL a, b :rest = -70
    TABLE inf, tau DEPEND celsius FROM -100 TO 100 WITH 200
	  FROM i=0 TO 1 {
		    tau[i] = vartau(v,i)
		    inf[i] = varss(v,i)
	  }
}
















Loading data, please wait...