ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/144490.

CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
datastore
pars
plots
poirazi-nmda-car
tests
validation-plots
README.txt
ampa_forti.mod
cacum.mod
cad.mod *
cagk.mod
cal.mod
calH.mod
car.mod
car_mag.mod
cat.mod
d3.mod *
h.mod
hha_old.mod
hha2.mod
kadist.mod
kaprox.mod
kca.mod
km.mod
nap.mod
nmda_andr.mod
somacar.mod
binaverages.m
bpap-cell.hoc
bpap-data.hoc
bpap-dendburst.hoc
bpap-graphics.hoc
bpap-gui.hoc
bpap-gui.ses
bpap-pars.hoc
bpap-record.hoc
bpap-run.hoc
bpap-scaling.hoc
bpap-sims.hoc
bpap-sims-cell1.hoc
bpap-sims-cell2.hoc
bpap-sims-scaling.hoc
bpap-somainj.hoc
bpap-spiketrain.hoc
ca1_mrg_cell1.hoc
ca1_mrg_cell2.hoc
ca1_poirazi.hoc
ChannelBlocker.hoc
CrossingFinder.hoc
epspsizes.hoc
figure-example.R
figures.R
figures-common.R
FileUtils.hoc
FormatFile.hoc
ghk.inc
GraphUtils.hoc
Integrator.hoc
Makefile
mosinit.hoc
NmdaAmpaSpineSynStim.hoc
NmdaAmpaSynStim.hoc
ObjectClass.hoc
plotscalingresults_pergroup1.m
plotscalingresults5.m
PointProcessDistributor.hoc
ReferenceAxis.hoc
removezeros.m
RPlot.hoc
scaling_plots.m
Segment.hoc
SimpleSpine.hoc
Spine.hoc
TreePlot.hoc
TreePlotArray.hoc
triexpsyn.inc
units.inc
utils.hoc
validate-bpap.hoc
VarList.hoc
VCaGraph.hoc
                            
TITLE  H-current that uses Na ions

NEURON {
	  SUFFIX h
    RANGE  gbar,vhalf, K, taun, ninf, g, gmax
	  USEION na WRITE ina      
    :	NONSPECIFIC_CURRENT i
}

UNITS {
	  (um) = (micrometer)
	  (mA) = (milliamp)
	  (uA) = (microamp)
	  (mV) = (millivolt)
	  (pmho) = (picomho)
	  (mmho) = (millimho)
}

PARAMETER { : parameters that can be entered when function is called in cell-setup
	  v              (mV)
    eh     = -10   (mV)
	  K      = 8.5   (mV)
	  gbar   = 0     (mho/cm2)          : initialize conductance to zero
	  vhalf  = -90   (mV)                 : half potential
}	


STATE {               : the unknown parameters to be solved in the DEs
	  n
}

ASSIGNED {                             : parameters needed to solve DE
	  ina  (mA/cm2)
	  ninf
	  taun (ms)
	  g    (mho/cm2)
    gmax (mho/cm2)
}

INITIAL {          : initialize the following parameter using states()
	  states(v)	
	  n = ninf
	  g = gbar*n
	  ina = g*(v-eh)
    gmax = g
}


BREAKPOINT {
	  SOLVE h METHOD cnexp
	  g = gbar*n
	  ina = g*(v-eh)  
    if (g > gmax) {
        gmax = g
    }
}

DERIVATIVE h {
	  states(v)
    n' = (ninf - n)/taun
}

PROCEDURE states(v(mV)) {  
 	  if (v > -30) {
	      taun = 1
	  } else {
        taun = 2(ms)*(1/(exp((v+145(mV))/-17.5(mV))+exp((v+16.8(mV))/16.5(mV))) + 5) :h activation tau
	  }  
    ninf = 1 - (1 / (1 + exp((vhalf - v)/K))) :steady state value
}




Loading data, please wait...