CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
datastore
pars
plots
poirazi-nmda-car
tests
validation-plots
README.txt
ampa_forti.mod
cacum.mod
cad.mod *
cagk.mod
cal.mod
calH.mod
car.mod
car_mag.mod
cat.mod
d3.mod *
h.mod
hha_old.mod
hha2.mod
kadist.mod
kaprox.mod
kca.mod
km.mod
nap.mod
nmda_andr.mod
somacar.mod
binaverages.m
bpap-cell.hoc
bpap-data.hoc
bpap-dendburst.hoc
bpap-graphics.hoc
bpap-gui.hoc
bpap-gui.ses
bpap-pars.hoc
bpap-record.hoc
bpap-run.hoc
bpap-scaling.hoc
bpap-sims.hoc
bpap-sims-cell1.hoc
bpap-sims-cell2.hoc
bpap-sims-scaling.hoc
bpap-somainj.hoc
bpap-spiketrain.hoc
ca1_mrg_cell1.hoc
ca1_mrg_cell2.hoc
ca1_poirazi.hoc
ChannelBlocker.hoc
CrossingFinder.hoc
epspsizes.hoc
figure-example.R
figures.R
figures-common.R
FileUtils.hoc
FormatFile.hoc
ghk.inc
GraphUtils.hoc
Integrator.hoc
Makefile
mosinit.hoc
NmdaAmpaSpineSynStim.hoc
NmdaAmpaSynStim.hoc
ObjectClass.hoc
plotscalingresults_pergroup1.m
plotscalingresults5.m
PointProcessDistributor.hoc
ReferenceAxis.hoc
removezeros.m
RPlot.hoc
scaling_plots.m
Segment.hoc
SimpleSpine.hoc
Spine.hoc
TreePlot.hoc
TreePlotArray.hoc
triexpsyn.inc
units.inc
utils.hoc
validate-bpap.hoc
VarList.hoc
VCaGraph.hoc
                            
TITLE  Na persistent channel
: used in distal oblique dendrites to assist Ca spike initiation  
: a typo in the exponential function was pointed out by Michele Migliore and
: corrected by Yiota Poirazi on December 4th, 2003
NEURON {
	  SUFFIX nap
	  USEION na READ ena WRITE ina
    RANGE  gnabar,vhalf, K, g, gmax
}

UNITS {
	  (mA) = (milliamp)
	  (mV) = (millivolt)
}

PARAMETER { : parameters that can be entered when function is called in cell-setup 
	  v               (mV)
    ena = 50        (mV) : Na reversal potential  (reset in cell-setup.hoc)
	  K = 1           (mV)              : slope of steady state variable
    :	gnabar = 0.001e-2 (mho/cm2) : suggested conductance, 1 percent of the transient Na current
	  gnabar = 0      (mho/cm2)          : initialized conductance
	  vhalf  = -51.90 (mV)                : half potential
}	

STATE { n }

ASSIGNED {
	  ina  (mA/cm2)
    g    (mho/cm2)
    gmax (mho/cm2)
}

INITIAL {
    :	SOLVE states not used
    gmax = 0
}

BREAKPOINT {
    states(v)
    g = gnabar*n*n*n
	  ina = g*(v-ena)
    if (g > gmax) {
        gmax = g
    }
}

PROCEDURE states(v (mV)) {     : exact when v held constant; integrates over dt step
    :        n = 1 / (1 + (exp(vhalf - v))/K) : steady state value !!!typo in the exponential function!!!
    TABLE n DEPEND vhalf, K FROM -150 TO 150 WITH 300     
    n = 1 / (1 + exp((vhalf - v)/K)) : steady state value
}
















Loading data, please wait...