State and location dependence of action potential metabolic cost (Hallermann et al., 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144526
With this model of a layer 5 pyramidal neuron the state and location dependence of the ATP usage and the metabolic efficiency of action potentials can be analyzed. Model parameters were constrained by direct subcellular recordings at dendritic, somatic and axonal compartments.
Reference:
1 . Hallermann S, de Kock CP, Stuart GJ, Kole MH (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 15:1007-14 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials;
Implementer(s): Hallermann, Stefan [hallermann at medizin.uni-leipzig.de]; Kole, Maarten [m.kole at nin.knaw.nl];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I K;
/
HallermannEtAl2012
readme.txt *
Cad.mod *
CaH.mod *
CaT.mod *
charge.mod *
h.mod *
Kca.mod *
Kv.mod *
Kv1_axonal.mod *
Kv7.mod *
na8st.mod
nax8st.mod
28_04_10_num19.hoc *
all_28_04_10_num19.ses *
Cell parameters.hoc
charge.hoc *
mosinit.hoc *
                            
TITLE Kv7-current

COMMENT
	Model reproducing cortical M currents, M.H.P. Kole
ENDCOMMENT

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)


}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {	
	dt		(ms)
	v 		(mV)
	vhalf = -48 (mV)				 
	gbar = 20	 (pS/um2)	:0.002 mho/cm2
 }


NEURON {
	SUFFIX Kv7
	USEION k READ ek WRITE ik
	RANGE gbar, ik
}

STATE { m }

ASSIGNED {
	ik (mA/cm2)
	gk (pS/um2)
	ek (mV)	
	
}


INITIAL {
	m=alpha(v)/(beta(v)+alpha(v))
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	ik=(1e-4)*gbar*m*(v-ek)
}

FUNCTION alpha(v(mV)) {
	alpha = 0.00623*exp((v-vhalf)/18.76)	

}

FUNCTION beta(v(mV)) {
	beta = 0.0199*exp(-(v-vhalf)/30.6)			
}

DERIVATIVE state {    

	m' = (1-m)*alpha(v) - m*beta(v)

}









Loading data, please wait...