Reinforcement learning of targeted movement (Chadderdon et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144538
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
Reference:
1 . Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PLoS One 7:e47251 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Reinforcement Learning; Reward-modulated STDP;
Implementer(s): Neymotin, Sam [samn at neurosim.downstate.edu]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Dopamine; Gaba; Glutamate;
/
arm1d
README
drspk.mod *
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
stats.mod *
updown.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc *
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
intfsw.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
samutils.hoc *
sense.hoc *
setup.hoc *
sim.hoc
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
units.hoc *
xgetargs.hoc *
                            
// $Id: basestdp.hoc,v 1.81 2012/03/07 22:41:21 samn Exp $

//* params/variables

declare("TargRate",8) // target peak location
declare("syl","o[2]") // list of sywvs
declare("taul",new List(),"incl",new List(),"maxwl",new List(),"wgl",new List())
declare("nqrat","o[1]","lnqp",new List(),"mynqp","o[1]")
declare("ltab","o[1]","contab","o[1]","wtab","o[2]","mtab","o[1]","dvtab","o[1]")
declare("witer",0,"updinc",2e3,"uprob",0.1)
declare("EEinc",0.01,"EIinc",0.01,"IEinc",0.01,"IIinc",0.01,"skipI",0)
declare("vrecw",new Vector(),"nqrec","o[1]")
declare("MODW",0,"MINW",1,"MODINC",0,"MININC",0.01)
declare("SPECTY",0,"drawsm",1,"smhz",1) // whether to draw smoothed spectra in mkdrawspec
declare("dosend",0,"fith","o[2]")
declare("nqplast","o[1]") // stores weights
declare("restorewg",0)
declare("EMIMPlast",0) // whether to have RL-modulated plasticity between EM -> IM cells

//declare("plastEEinc",1,"plastEIinc",1,"plastEEmaxw",2.5,"plastEImaxw",2.5)
declare("plastEEinc",1,"plastEIinc",1,"plastEEmaxw",5,"plastEImaxw",2.5)
declare("plastIEinc",1,"plastIIinc",1,"plastIEmaxw",3,"plastIImaxw",3)
declare("nqplast","o[1]") // stores weights
sprint(tstr,"d[%d][%d]",CTYPi,CTYPi)
declare("dplastinc",tstr,"dplasttau",tstr,"dplastmaxw",tstr) // params for plasticity

ESTDP_INTF6 = ISTDP_INTF6 = 0
resetplast_INTF6 = 0
DOPE_INTF6=1 // dopamine learning
EDOPE_INTF6 = 1
IDOPE_INTF6 = 0
FORWELIGTR_INTF6 = 1  // activate forward eligibility traces (post after pre)?
BACKELIGTR_INTF6 = 0  // activate backward eligibilty traces (pre after post)?
EXPELIGTR_INTF6 = 0   // use an exponential decay for the eligibility traces?
maxeligtrdur_INTF6 = 100 // maximum eligibilty trace duration (in ms)

//* setplast
proc setplast () { local c,i,j,ty2,xiinc,xeinc,ximaxw,xemaxw,fc,gn,l1,l2,a\
                  localobj xo,vwg,vtau,vinc,vmaxw,vidx
  a=allocvecs(vwg,vtau,vinc,vmaxw,vidx) fc=2
  for c=0,numcols-1 {
    for i=0,CTYPi-1 if(col[c].numc[i]) {
      if(IsTHAL(i)) gn=0
      l1=int(layer(i))
      if(ice(i)) {
        xiinc = plastIIinc 
        xeinc = plastIEinc 
        ximaxw = plastIImaxw
        xemaxw = plastIEmaxw
      } else {
        xiinc = plastEIinc 
        xeinc = plastEEinc 
        ximaxw = plastEImaxw
        xemaxw = plastEEmaxw
      }
      for j=0,CTYPi-1 if(col[c].div[i][j]) {
        if(IsTHAL(i) || IsTHAL(j) || c==0) gn=0 else gn=1
        l2=int(layer(j))
        gn=0
        if(i==ES && j==EM) gn=1 // feedforward plasticity from ES -> EM
        if(EMIMPlast && i==EM && j==IM) gn=1 // if have plasticity from EM -> IM

        if(ice(j)) {
          dplastinc[i][j] = xiinc * gn
          dplasttau[i][j] = 10 * fc
          dplastmaxw[i][j] = ximaxw 
        } else {
          dplastinc[i][j] = xeinc * gn
          dplasttau[i][j] = 10 * fc
          dplastmaxw[i][j] = xemaxw 
        }
      }
    }
    for ltr(xo,col[c].ce) {
      xo.getdvi(vidx)
      vrsz(vidx.size,vwg,vtau,vinc,vmaxw)
      vwg.fill(1)
      for i=0,vidx.size-1 {
        ty2 = col[c].ce.o(vidx.x(i)).type
        vtau.x(i) = dplasttau[xo.type][ty2]
        vinc.x(i) = dplastinc[xo.type][ty2]
        vmaxw.x(i) = dplastmaxw[xo.type][ty2]
      }
      if(0) print ice(xo.type),vtau.min,vtau.max,vinc.min,vinc.max,vmaxw.min,vmaxw.max
      xo.setplast(vwg,vtau,vinc,vmaxw)
    }  
  }
  maxplastt_INTF6 = 40 * fc // max time interval over which to consider plasticiy
  dealloc(a)
}



//* getplastnq(col) - make an NQS with plasticity info, so can load later
obfunc getplastnq () { local c,i,a localobj nq,col,xo,vwg,vtau,vinc,vmaxw
  a=allocvecs(vwg,vtau,vinc,vmaxw) col=$o1 c=col.id
  nq=new NQS("col","id","gid","vwg","vtau","vinc","vmaxw")
  {nq.odec("vwg") nq.odec("vtau") nq.odec("vinc") nq.odec("vmaxw")}
  for ltr(xo,col.ce) {
    vrsz(xo.getdvi,vwg,vtau,vinc,vmaxw)
    xo.getplast(vwg,vtau,vinc,vmaxw)
    nq.append(c,xo.id,xo.gid,vwg,vtau,vinc,vmaxw)
  }
  dealloc(a)
  return nq
}

//* setplastnq(nq,col) - load plasticity weights,info into col INTF6 cells
// should set resetplast_INTF6 to 0 if using this function
func setplastnq () { localobj nq,col,xo,vwg,vtau,vinc,vmaxw
  nq=$o1 col=$o2
  for ltr(xo,col.ce) {
    if(nq.select(-1,"gid",xo.gid)!=1) {
      print "can't find gid " , xo.gid , " in nqs!"
      return 0
    }
    vwg=nq.get("vwg",nq.ind.x(0)).o
    vtau=nq.get("vtau",nq.ind.x(0)).o
    vinc=nq.get("vinc",nq.ind.x(0)).o
    vmaxw=nq.get("vmaxw",nq.ind.x(0)).o
    if((i=xo.getdvi)!=vwg.size) {
      print "wrong size ", i, " != " , vwg.size
      return 0
    }
    xo.setplast(vwg,vtau,vinc,vmaxw)
  }
  return 1
}

//* plastoff(col)
proc plastoff () { local i,j,ty2,a localobj xo,vwg,vtau,vinc,vmaxw,vidx,col
  a=allocvecs(vwg,vtau,vinc,vmaxw,vidx) col=$o1
  for ltr(xo,col.ce) {
    xo.getdvi(vidx)
    vrsz(vidx.size,vwg,vtau,vinc,vmaxw)
    vwg.fill(1)
    for i=0,vidx.size-1 {
      ty2 = col.ce.o(vidx.x(i)).type
      vtau.x(i) = dplasttau[xo.type][ty2]
      vinc.x(i) = 0 
      vmaxw.x(i) = dplastmaxw[xo.type][ty2]
    }
    xo.setplast(vwg,vtau,vinc,vmaxw)
  }  
  dealloc(a) 
}

//* updateplast(col)
proc updateplast () { local i,j,a localobj col,xo,vwg,vtau,vinc,vmaxw,vidx
  a=allocvecs(vwg,vtau,vinc,vmaxw,vidx) col=$o1
  for ltr(xo,col.ce) {
    xo.getdvi(vidx)
    vrsz(vidx.size,vwg,vtau,vinc,vmaxw)
    xo.getplast(vwg,vtau,vinc,vmaxw)
    for vtr(&i,vidx,&j) if(vmaxw.x(j)) {
      if(ice(col.ce.o(i))) {
        vmaxw.x(j) = plastEImaxw
        vinc.x(j) = plastEIinc
      } else {
        vmaxw.x(j) = plastEEmaxw
        vinc.x(j) = plastEEinc
      }
    }
    xo.setplast(vwg,vtau,vinc,vmaxw)
  }
  dealloc(a)
}

if(restorewg) {
  nqplast=new NQS("/u/samn/arm/data/11may30_basestdp145_TrainW10_TargTrainRate8_LD2e3__plastnq.nqs")
  setplastnq(nqplast,col)
  resetplast_INTF6 = 0 // make sure starting params kept
}

// jrtm_INTF6 = updinc

declare("vcheck",new Vector())
declare("myncl",new List(),"myspkl",new List(),"myspktyl",new List(),"vice",new Vector(col.allcells))

//* declares

declare("wgnq","o[9]")
declare("nqp","o[9][10]","nqps","o[9][10]","nqchg","o[9]","nqchgs","o[9]")
declare("Ts","d[10]","Te","d[10]")

//* mk4specs(start1,end1,start2,end2,start3,end3,start4,end4,celltype[,norm,sm])  - makes pmtm spectra for 
// the 4 periods of the sim: baseline, zip on, zip on + learning, zip on + recall
proc mk4specs () { local i,ct,k,nrm,sampr,sm,smHZ,a localobj vec
  a=allocvecs(vec)
  {Ts[0]=$1*1e3 Te[0]=$2*1e3}
  {Ts[1]=$3*1e3 Te[1]=$4*1e3}
  {Ts[2]=$5*1e3 Te[2]=$6*1e3}
  {Ts[3]=$7*1e3 Te[3]=$8*1e3}
  ct=$9
  if(numarg()>9) nrm=$10 else nrm=0
  if(numarg()>10) smHZ=$11 else smHZ=smhz
  sampr=1e3/binsz
  if(ct<0) sampr=200
  for i=0,3 if(Te[i] > Ts[i]) {
    if(myv[i]==nil) myv[i]=new Vector() else myv[i].resize(0)
    if(ct==-1) {
      {myv[i].copy(nqLFP.v,Ts[i]/vdt_INTF6,Te[i]/vdt_INTF6-1)}
      vec.resize(myv[i].size/(1e3/vdt_INTF6/sampr))
      myv[i].downsampavg(vec,(1e3/vdt_INTF6/sampr)) // downsample to 200 Hz
      myv[i].resize(0)
      myv[i].copy(vec)
      myv[i].sub(myv[i].mean)
    } else {
      {myv[i].copy(nqCTY[CDX].v[ct],Ts[i]/binsz,Te[i]/binsz-1) myv[i].sub(myv[i].mean)}
    }
    {nqsdel(nqp[CDX][i]) nqp[CDX][i]=getspecnq(myv[i],sampr,SPECTY)}
    sm=0
    while(nqp[CDX][i].v.x(sm) < smHZ) sm += 1
    //print nqp[CDX][i].v.x(sm),smHZ,sm
    {nqsdel(nqps[CDX][i]) nqps[CDX][i]=new NQS()}
    {nqps[CDX][i].cp(nqp[CDX][i]) boxfilt(nqps[CDX][i].v[1],sm)}
    if(g!=nil) {
      if(nrm) nqps[CDX][i].v[1].div(nqps[CDX][i].v[1].sum)
      if(ct>=0) {
        print CTYP.o(ct).s,i,nqp[CDX][i].v.x(nqp[CDX][i].v[1].max_ind),nqp[CDX][i].v[1].max
      } else print "LFP",i,nqp[CDX][i].v.x(nqp[CDX][i].v[1].max_ind),nqp[CDX][i].v[1].max
    }
  }
  dealloc(a)
}
//* dr4spec(celltype) 
proc dr4spec () {
  initg()
  mk4specs(1,BaseDur,\
           BaseDur+1,BaseDur+ZipDur-1,\
           BaseDur+ZipDur+1,BaseDur+ZipDur+LearnDur-1,\
           BaseDur+ZipDur+LearnDur+1,2*BaseDur+ZipDur+LearnDur-1,$1)
  for i=0,3 if(g!=nil) {
    if(drawsm) {
      if(nqps[CDX][i]==nil) continue
      nqps[CDX][i].gr("pow","f",0,i+1,1)
    } else {
      if(nqp[CDX][i]==nil) continue
      nqp[CDX][i].gr("pow","f",0,i+1,1)
    }
  }
  fing()
}
//* dr4chg(celltype)
proc dr4chg () { local i,p1,p2
  initg()
  if(numarg()<=1) {
    mk4specs(1,BaseDur,\
             BaseDur+1,BaseDur+ZipDur-1,\
             BaseDur+ZipDur+1,BaseDur+ZipDur+LearnDur-1,\
             BaseDur+ZipDur+LearnDur+1,2*BaseDur+ZipDur+LearnDur-1,$1)
  }
  {nqsdel(nqchg[CDX]) nqchg[CDX]=new NQS("f","pow")  }
  nqp[CDX][0].verbose=nqp[CDX][2].verbose=0
  for i=0,int(nqp[CDX][0].v.max)-1 {
    if(!nqp[CDX][0].select("f","[]",i,i+1)) continue
    if(!nqp[CDX][2].select("f","[]",i,i+1)) continue
    p2 = nqp[CDX][2].getcol("pow").sum
    p1 = nqp[CDX][0].getcol("pow").sum
    if(p1>0) nqchg[CDX].append((i+1)/2.0,(p2-p1)/p1) else  nqchg[CDX].append((i+1)/2.0,0)
  }
  if(g!=nil) nqchg[CDX].gr("pow","f",0,1,1)
  fing()
  nqp[CDX][0].verbose=nqp[CDX][2].verbose=1
}
//* getratety(start,end,ty)
func getratety () { local startt,endt,ty,ns,r
  startt=$1 endt=$2 ty=$3
  if(endt-startt<=0) return 0
  if(snq[CDX]==nil) snq[CDX]=SpikeNQS(vit[CDX].tvec,vit[CDX].vec,col[CDX])
  ns=snq[CDX].select("type",ty,"t","[]",startt,endt)
  r = 1e3 * ns / (col[CDX].numc[ty] * (endt-startt) )
  return r
}
//* pravgrates2 (start1,end1,start2,end2,start3,end3,start4,end4) 
proc pravgrates2 () { local i,ct,r localobj s
  {Ts[0]=$1*1e3 Te[0]=$2*1e3}
  {Ts[1]=$3*1e3 Te[1]=$4*1e3}
  {Ts[2]=$5*1e3 Te[2]=$6*1e3}
  {Ts[3]=$7*1e3 Te[3]=$8*1e3}
  s=new String2()
  for col.ctt(&ct) {
    sprint(s.s,"%s:\t",CTYP.o(ct).s)
    for i=0,3 {
      r = getratety(Ts[i],Te[i],ct)
      sprint(s.t,"%0.2f\t",r)
      strcat(s.s,s.t)
    }
    print s.s
  }
}

//* savenqspec - saves nqp,nqps spectra, uses strv
proc savenqspec () { local i,st,et,ct localobj str
  str=new String() 
  st=plaststartT_INTF6/1e3
  et=plastendT_INTF6/1e3
  for case(&ct,ES,IS,EM,IM,CTYPi,CTYPi+1) {
    if(g!=nil) {
      g.erase
      gvmarkflag=0 
    }
    mkdrawspec(0,TrainStart/1e3,TrainStart/1e3,LearnDur+TrainStart/1e3,LearnDur+TrainStart/1e3,tstop/1e3,ct)
    for i=0,2 {    
      {sprint(str.s,"./data/%s_%s_nqp_%d.nqs",strv,CTYP.o(ct).s,i) nqp[0][i].sv(str.s)}
      {sprint(str.s,"./data/%s_%s_nqps_%d.nqs",strv,CTYP.o(ct).s,i) nqps[0][i].sv(str.s)}
    }
  }
}
//* ldnqspec - saves nqp,nqps spectra, uses strv
obfunc ldnqspec () { local i,st,et,ct localobj str,nqo,nq,nqs
  {str=new String() nqo=new NQS("str","nq")  nqo.odec("nq") nqo.strdec("str")}
  for case(&ct,ES,IS,EM,IM,CTYPi,CTYPi+1) {
    for i=0,3 {    
      {sprint(str.s,"./data/%s_%s_nqp_%d.nqs",strv,CTYP.o(ct).s,i) nq=new NQS(str.s)}
      nqo.append(str.s,nq)
      nqsdel(nq)
      {sprint(str.s,"./data/%s_%s_nqps_%d.nqs",strv,CTYP.o(ct).s,i) nqs=new NQS(str.s)}
      nqo.append(str.s,nqs)
      nqsdel(nqs)      
    }
  }
  return nqo
}
/*
//* run and init nqs objects
proc myrun () { local i localobj xo
  run()  
  for CDX=0,numcols-1 {
    {nqsdel(snq[CDX]) snq[CDX]=SpikeNQS(vit[CDX].tvec,vit[CDX].vec,col[CDX])}
    snq[CDX].marksym="O"
  }
  CDX=0
  {nqsdel(nqplast) nqplast=getplastnq(col)}
  {nqsdel(mynqp) mynqp=lnq2nqs(lnqp)}
  for CDX=0,numcols-1 {
    print "CDX:",CDX
    pravgrates()
  }
  initAllMyNQs()
}
//* mysv - save output after myrun
proc mysv () { localobj s
  s=new String()
  {sprint(s.s,"/u/samn/intfstdp/data/%s_snq.nqs",$s1) snq.tog("DB") snq.sv(s.s)}
  if(nqrat!=nil) {
    {sprint(s.s,"/u/samn/intfstdp/data/%s_nqrat.nqs",$s1) nqrat.tog("DB") nqrat.sv(s.s)}
  }
  if(mynqp.size>0) {
    {sprint(s.s,"/u/samn/intfstdp/data/%s_mynqp.nqs",$s1) mynqp.tog("DB") mynqp.sv(s.s)}
  }
  {nqsdel(wgnq) wgnq=mkwgnq(col) sprint(s.s,"/u/samn/intfstdp/data/%s_wgnq.nqs",strv) wgnq.sv(s.s)}
}
//* myrunsv(simstr) - run & save output
proc myrunsv () { 
  myrun()
  mysv($s1)
} */
//* snq2vit(snq,vit) -  copy snq into a vitem
proc snq2vit () { local i localobj snq,vit  
  snq=$o1 vit=$o2 snq.tog("DB")
  vrsz(0,vit.vec,vit.tvec)
  vit.tvec.copy(snq.getcol("t"))
  vit.vec.copy(snq.getcol("id"))
}
//* myrd(simstr[,rdr]) - read output from data saved with mysv
proc myrd () { local rdr localobj s
  s=new String() if(numarg()>1) rdr=$2 else rdr=0
  {nqsdel(snq) sprint(s.s,"/u/samn/intfstdp/data/%s_snq.nqs",$s1) snq=new NQS(s.s) snq2vit(snq,vit)}
  if(rdr){
    {nqsdel(nqrat) sprint(s.s,"/u/samn/intfstdp/data/%s_nqrat.nqs",$s1) nqrat=new NQS(s.s)}
    {nqsdel(mynqp) sprint(s.s,"/u/samn/intfstdp/data/%s_mynqp.nqs",$s1) mynqp=new NQS(s.s)}
  }
  {nqsdel(wgnq) sprint(s.s,"/u/samn/intfstdp/data/%s_wgnq.nqs",$s1) wgnq=new NQS(s.s)}
}

//* settunerc - setup recording of spikes used in tuning
proc settunerec () { local i localobj xo,nc
  for i=0,CTYPi-1 myspktyl.append(new Vector())
  for ltr(xo,col.ce,&i) {
    xo.flag("out",1) // make sure NetCon events enabled from this cell
    myncl.append(nc=new NetCon(xo,nil))
    myspkl.append(new Vector())
    nc.record(myspkl.o(i)) // record each cell separately
    vice.x(i)=ice(xo.type)
  }
}

//* mksyl - setup lists of weight vectors
proc mksyl () { local i,dvt localobj vw1,vw2
  for i=0,1 syl[i]=new List()
  for i=0,col.allcells-1 {
    dvt=col.ce.o(i).getdvi()
    vw1=new Vector(dvt)
    vw2=new Vector(dvt)
    col.ce.o(i).getsywv(vw1,vw2)
    syl[0].append(vw1)
    syl[1].append(vw2)
  }
}
//* mkstdpl - 
proc mkstdpl () { local i,dv localobj vtau,vinc,vmaxw,vwg,xo
  for ltr(xo,col.ce,&i) {
    dv=xo.getdvi
    vtau=new Vector(dv)
    vinc=new Vector(dv)
    vmaxw=new Vector(dv)
    vwg=new Vector(dv)
    if(!ice(xo.type)) { // only STDP from E->X cells
      xo.getplast(vwg,vtau,vinc,vmaxw)
      vcheck.append(i)
    }
    taul.append(vtau)
    incl.append(vinc)
    maxwl.append(vmaxw)
    wgl.append(vwg)
  }
}
//* mkdvtab - make table with dvi
proc mkdvtab () { local i localobj col,xo
  col=$o1
  dvtab=new List()
  for ltr(xo,col.ce,&i) {
    dvtab.append(new Vector(xo.getdvi))
    xo.getdvi(dvtab.o(dvtab.count-1))
  }  
}

//* conn2tab - make lookup tables with connectivity info
obfunc conn2tab () { local i,j,k,id1,id2 localobj ltab,col,nqc,contab,wtab1,wtab2,mtab,vc
  col=$o1 ltab=new List() vc=new Vector(col.allcells)
  for i=0,3 ltab.append(new Matrix(col.allcells,col.allcells))
  {contab=ltab.o(0) wtab1=ltab.o(1) wtab2=ltab.o(2) mtab=ltab.o(3)}
  if(col.connsnq==nil) {
    print "conn2tab ERR: col.connsnq is nil"
    return nil
  }
  nqc=col.connsnq
  nqc.sort("del") // make sure order in NQS corresponds to getdvi order
  for i=0,nqc.v.size-1 {
    id1=nqc.v[0].x(i) // from id1
    id2=nqc.v[1].x(i) // to id2
    contab.x(id1,id2)=1 // is there a connection?
    wtab1.x(id1,id2)=nqc.v[4].x(i) // weight 1
    wtab2.x(id1,id2)=nqc.v[5].x(i) // weight 2
    mtab.x(id1,id2) = vc.x(id1) // index into div vector -- assumes order in connsnq according to div
    vc.x(id1) += 1
  } 
  return ltab
}

//* updateSTDP - update the STDP params
proc updateSTDP () { local i,j,k,md,df,fctr,inc,inc0,idx,trg,ety,cidx,pkx,pky,pkd,a,poid,pkdr\
                    localobj xo,vs,ce,nqp,vec,tvec,vh,vwg,vtau,vinc,vmaxw
  print "t:", t, ", witer:",witer
  a=allocvecs(vec,tvec,vh,vwg,vtau,vinc,vmaxw)
  ce=col.ce
  for i=0,CTYPi-1 if(col.numc[i]) myspktyl.o(i).resize(0) //setup per-type counts
  for ltr(xo,ce,&i) myspktyl.o(xo.type).append(myspkl.o(i))
  vrsz(0,vec,tvec)
  for case(&i,ES,EM,&j) tvec.append(myspktyl.o(i))
  vh = tvec.histogram(witer*updinc,(witer+1)*updinc,binsz)
  vh.sub(vh.mean)  
  lnqp.append(nqp=getspecnq(vh,1e3/binsz,SPECTY)) // get spectrum from E MUA
  pkx = nqp.v.x(nqp.v[1].max_ind)
  pky = nqp.v[1].max
  pkd = TargRate - pkx // difference in peak frequency, + = too slow, - = too fast
  pkdr = abs(pkd) / TargRate
  print pkx, pky, pkd, pkdr
  if(MODINC || MODW) {
    if(t >= plaststartT_INTF6 && t <= plastendT_INTF6) for vtr(&i,vcheck) if(myspkl.o(i).size) { xo = ce.o(i)    
      vrsz(xo.getdvi,vwg,vtau,vinc,vmaxw)
      xo.getplast(vwg,vtau,vinc,vmaxw) // get current weight gains    
      for vtr(&j,dvtab.o(i),&k) {
        inc = 0
        if(vice.x(i)) { // presynaptic I cell
          if(ISTDP_INTF6) {
            if(vice.x(j)) { // postsynaptic I cell
              if(skipI) continue
              if(pkd > 0) inc = IIinc else if(pkd < 0) inc = -IIinc
            } else { // postsynaptic E cell
              if(pkd > 0) inc = IEinc else if(pkd < 0) inc = -IEinc
            }
          }
        } else { // presynaptic E cell
          if(ESTDP_INTF6) {
            if(vice.x(j)) { // postsynaptic I cell
              if(skipI) continue
              if(pkd > 0) inc = EIinc else if(pkd < 0) inc = -EIinc
            } else { // postsynaptic E cell
              if(pkd > 0) inc = -EEinc else if(pkd < 0) inc = EEinc
            }
          }
        }
        if(MODINC) vinc.x(k) = MAXxy(MININC,vinc.x(k) + inc*pkdr)
        if(MODW) vmaxw.x(k) = MAXxy(MINW,vmaxw.x(k) + inc*pkdr)
      }
      xo.setplast(vwg,vtau,vinc,vmaxw) // reset plasticity params    
    }
  }
  for vtr(&i,vrecw) {
    for j=0,col.allcells-1 if(contab.x(i,j)) {
//      idx = mtab.x(i,j)
//      nqrec.append(i,j,ce.o(i).type,ce.o(j).type,syl[0].o(i).x(idx),syl[1].o(i).x(idx),witer)
    }
  }
  witer += 1
  for i=0,myspkl.count-1 myspkl.o(i).resize(0) // reset spike counts for cells to 0
  for(i=CTYPi-1;i>=0;i-=1) if(col.numc[i]) {
    j=1e3*myspktyl.o(i).size/(col.numc[i]*updinc)
    print CTYP.o(i).s, " " , j , " avg Hz "
    nqrat.append(t,witer,i,j,pkx,pky)
    myspktyl.o(i).resize(0) // reset spike counts for types to 0
  }
  dealloc(a)
  cvode.event(t+updinc,"updateSTDP()") // set next update weights event
}

//* mysend - starts off the update q
proc mysend () { local sz localobj xo
  for ltr(xo,lnqp) nqsdel(xo)
  lnqp.remove_all()
  sz = (LearnDur/(updinc/1e3))
  {nqsdel(nqrat) nqrat=new NQS("t","witer","ty","rate","pkx","pky") nqrat.clear(sz)}
  {nqsdel(nqrec) nqrec=new NQS("id1","id2","ty1","ty2","witer","wgain","inc","maxw")}
  cvode.event(updinc,"updateSTDP()") 
}

//* prnqrat(nqrat) - print average peak rates in 20 iters
proc prnqrat () { local sdx localobj nqrat
  nqrat=$o1
  sdx=0
  nqrat.verbose=0
  while(sdx<witer) {
    nqrat.select("witer","[]",sdx,sdx+20,"ty",E5R)
    print nqrat.getcol("pkx").mean,"+/-",nqrat.getcol("pkx").stderr
    sdx += 20
  }
  nqrat.verbose=1
}

//* drtargrate(nqrat) -
proc drtargrate () { localobj nqrat
  nqrat=$o1
  nqrat.tog("DB")
  nqrat.select("ty",E5R)
  {gvmarkflag=0 nqrat.gr("pkx","t",0,2,1)}
  {gvmarkflag=1 nqrat.gr("pkx","t",0,2,3) gvmarkflag=0}
  drline(0,TargRate,tstop,TargRate,g,3,4)
  drline(TrainStart,0,TrainStart,100,g,9,9)
  drline(TrainStop,0,TrainStop,100,g,9,9)
}

//* drpoprates(nqrat) - draw population rates vs iteration
proc drpoprates () { local ct,i localobj nqrat
  nqrat=$o1
  nqrat.verbose=0
  drline(0,TargRate,tstop,TargRate,g,3,4)
  for case(&ct,ES,EM,IS,ISL,IM,IML,&i) {
    nqrat.select("ty",ct)
    nqrat.gr("rate","t",0,i+1,1)
  }
  nqrat.verbose=1
  drline(TrainStart,0,TrainStart,100,g,9,9)
  drline(TrainStop,0,TrainStop,100,g,9,9)
}

//* drlnqp(startidx,endidx)
proc drlnqp () { local sidx,eidx,i
  sidx=$1 eidx=$2
  for i=sidx,eidx {
    lnqp.o(i).gr("pow","f",0,(i+1)%10,1)
  }
}

//* mynqp2lnqp(mynqp) - copy the nqp NQS objects in $o1 to a list and return it
obfunc mynqp2lnqp () { local i localobj lnqp,mynqp,nqp
  mynqp=$o1
  mynqp.tog("DB")
  lnqp=new List()
  for i=0,mynqp.v.size-1 lnqp.append(nqp=mynqp.get("nqp",i).o)
  return lnqp
}

//* lnq2nqs(ls) - copy the ls NQS objects to a NQS and return it
obfunc lnq2nqs () { local i localobj lnq,nq,xo
  lnq=$o1
  {nq=new NQS("i","nqp") nq.odec("nqp") nq.clear(lnq.count)}
  for ltr(xo,lnq,&i) nq.append(i,xo)
  return nq
}

//* mkavgnqp(lnqp,startidx,endidx) - return an nqs with average +/ stderr of power at frequencies
// lnqp is a list of nqp objects
obfunc mkavgnqp () { local i,sidx,eidx localobj nqa,nqp,lnqp,va,ve
  lnqp=$o1 sidx=$2 eidx=$3
  nqa=new NQS("f","avg","err")
  for i=sidx,eidx {
    nqp=lnqp.o(i)
    
  }
  return nqa
}

//* svimg1(basename) - saves idraw, for when screen capture not working
proc svimg1 () {
  {sprint(tstr,"gif/%s.id",$s1) save_idraw(tstr)}
}

//* svimg2(basename) - saves id as gif & gets rid of intermediate pdf
proc svimg2 () {
  {sprint(tstr,"epstopdf gif/%s.id",$s1) system(tstr)}
  {sprint(tstr,"convert  gif/%s.pdf gif/%s.gif",$s1,$s1) system(tstr)}
  {sprint("rm gif/%s.pdf",$s1) system(tstr)}
  {sprint("rm gif/%s.id",$s1) system(tstr)}
}

//* calls

if(seadsetting_INTF6==3) setplast() // setup plasticity params

// Excise the shoulder EM efferents by setting all weight gains to zero.
objref xo
objref vidx, vwg, vtau, vinc, vmaxw
vidx = new Vector()
vwg = new Vector()
vtau = new Vector()
vinc = new Vector()
vmaxw = new Vector()
// Loop over all EM cells...
for ii=0,95 {
  // For only the shoulder cells...
  if ((ii % 4 == 0) || (ii % 4 == 1)) {
     // Get the cell into xo.
     xo = col[0].ce.o(ii + 128)

     // Get the divergence count and set up the vectors accordingly.
     xo.getdvi(vidx)
     vrsz(vidx.size,vwg,vtau,vinc,vmaxw)

     // Get the hold plasticity data.
     xo.getplast(vwg,vtau,vinc,vmaxw)

     // Zero out all of the weight gains, and save the new settings.
     vwg.fill(0)
     xo.setplast(vwg,vtau,vinc,vmaxw)
  }
}

if(dosend) fith=new FInitializeHandler("mysend()")

if(0) {
  settunerec()
  mkstdpl()
  mkdvtab(col)

  ltab=conn2tab(col)
  contab=ltab.o(0)
  wtab[0]=ltab.o(1)
  wtab[1]=ltab.o(2)
  mtab=ltab.o(3)
}


Loading data, please wait...