Reinforcement learning of targeted movement (Chadderdon et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144538
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
Reference:
1 . Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex PLoS ONE 2012 7(10):e47251
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Reinforcement Learning; Reward-modulated STDP;
Implementer(s): Neymotin, Sam [samn at neurosim.downstate.edu]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Dopamine; Gaba; Glutamate;
/
arm1d
README
drspk.mod *
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
stats.mod *
updown.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc *
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
intfsw.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
samutils.hoc *
sense.hoc *
setup.hoc *
sim.hoc
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
units.hoc *
xgetargs.hoc *
                            
// $Id: nrnoc.hoc,v 1.74 2007/11/20 07:51:52 billl Exp $

proc nrnoc () {}

// Users should not edit nrnoc.hoc or default.hoc.  Any local 
// changes to these files should be made in local.hoc.

// key '*&*' is picked up by to indicate command for emacs
proc elisp () { printf("*&* %s\n",$s1) }
// if (not exists(simname)) { strdef simname, output_file, datestr, comment }

// Simctrl.hoc will automatically load stdgraph.hoc which automatically
// loads stdrun.hoc
strdef temp_string_, user_string_  // needed for simctrl
/* Global variable default values.  NOTE that stdrun.hoc, stdgraph.hoc
and simctrl.hoc all contain variable definitions and thus default.hoc
should be loaded after these files */
load_file("default.hoc")      /* Load default.hoc */

/* Allows arrays of strings */
objref hoc_obj_[2]
load_file("stdgui.hoc") // don't want to encounter other String tempate defs
load_file("simctrl.hoc")

proc run () {
  running_ = 1
  stdinit()
  continueRun(tstop)
  finish()
}

proc continueRun () { local rt, rtstart, ts
  if (numarg()==1) ts=$1 else ts=t+1e3
  realtime = 0  rt = screen_update_invl  rtstart = startsw()
  eventcount=0
  eventslow=1
  stoprun = 0
  if (using_cvode_) {
    if (cvode.use_local_dt || (cvode.current_method()%10) == 0) {
      cvode.solve(ts)
      flushPlot()
      realtime = startsw() - rtstart
      return
    }
  } else {
    ts -= dt/2
  }
  while (t<ts && stoprun==0) {
    step()
    realtime = startsw() - rtstart
    if (realtime >= rt) {
      //                        if (!stdrun_quiet) fastflushPlot()
      screen_update()
      //really compute for at least screen_update_invl
      realtime = startsw() - rtstart
      rt = realtime + screen_update_invl
    }
  }
  if (using_cvode_ && stoprun == 0) { // handle the "tstop" event
    step() // so all recordings take place at tstop
  }
  flushPlot()
  realtime = startsw() - rtstart
}

proc stdinit() {
        cvode_simgraph()
        realtime = 0
        setdt()
        init()
        initPlot()
}

proc init () {
  cvode_simgraph()
  initMech()
  initMisc1()

  // Initialize state vars then calculate currents
  // If user hand-set v in initMisc1() then v_init should be > 1000,
  // else all compartments will be set to v_init
  if (v_init < 1000) {
    finitialize(v_init)
  } else {
    finitialize()
  }

  // Set ca pump and leak channel for steady state
  setMemb()

  initMisc2()
  if (cvode_active()) cvode.re_init() else fcurrent()
  frecord_init()
}

// Initialization of mechanism variables
// NOTE: if any changes are made to the NEURON block of any local mod
// file, the user must add the necessary inits to initMisc1()
proc initMech () { 
  forall {
    if ((!ismembrane("pas")) && (!ismembrane("Passive"))) { 
      // Allow for either pas or Passive mod file usage
      // errorMsg("passive not inserted") 
    }

    if (ismembrane("na_ion")) { 
      nai = na_init
      nai0_na_ion = na_init
    }
    
    if (ismembrane("k_ion")) {
      ki = k_init
      ki0_k_ion = k_init
    }
    
    if (ismembrane("ca_ion")) { 
      cai = ca_init
      cai0_ca_ion = ca_init
    }
  }
}

//* setMemb complex -- multiple names for passive mech
//** declarations
iterator scase() { local i
  for i = 1, numarg() { temp_string_ = $si iterator_statement }}
objref paslist,pasvars[3],XO
double pasvals[2],x[1]
paslist = new List()
for ii=0,2 pasvars[ii]= new String()
for scase("fastpas","pas","Pass","Passive") paslist.append(new String(temp_string_))

//** getval(),setval() -- return/set the hoc value of a string
func retval () { return getval($s1) }
func getval () { 
  sprint(temp_string2_,"x=%s",$s1)
  execute(temp_string2_)
  return x
}
proc setval () { 
  sprint(temp_string2_,"%s=%g",$s1,$2)
  execute(temp_string2_)
}

//** findpas()
// assumes that we are starting in a live section since looks for pass mech there
qx_=0
proc findpas () {
  for ii=0,paslist.count-1 {
    XO=paslist.object(ii)
    if (ismembrane(XO.s)) {
      // print XO.s,"found"
      pasvars[2].s=XO.s
      sprint(pasvars[0].s,"g_%s(qx_)",XO.s)
      for scase("e","erev","XXXX") {  // look for the proper prefix
        sprint(temp_string_,"%s_%s",temp_string_,XO.s)
        if (name_declared(temp_string_)==1) break
      }
      if (name_declared(temp_string_)==0) { // not found
        printf("SetMemb() in nrnoc.hoc: Can't find proper 'erev' prefix for %s\n",XO.s)
      } else {
        sprint(pasvars[1].s,"%s(qx_)",temp_string_)
      }
    }
  }
}

proc setMemb () {
  if (!secp()) return
  findpas() // assume that passive name is the same in all sections
  forall for (qx_,0) {  // will eventually want 'for (x)' to handle all the segments
    if (ismembrane(pasvars[2].s)) {
        for ii=0,1 pasvals[ii]=getval(pasvars[ii].s)
        setmemb2()
        for ii=0,1 setval(pasvars[ii].s,pasvals[ii])
    }
  }
}

// secp() determine whether any sections exist
func secp () { local n
  n=0
  forall n+=1
  if (n>0) return 1 else return 0
}

func setother () {return 0} // callback stub
proc setmemb2 () { local iSum, ii, epas, gpas
  if (!secp()) return
  gpas=pasvals[0] epas=pasvals[1]
  // Setup steady state voltage using leak channel
  iSum = 0.0
  if (ismembrane("na_ion")) { iSum += ina(qx_) }
  if (ismembrane("k_ion"))  { iSum += ik(qx_)  }
  if (ismembrane("ca_ion")) { iSum += ica(qx_) }
  iSum += setother()

  if (iSum == 0) {        // Passive cmp so set e_pas = v
    epas = v
  } else {
    if (gpas > 0) {    // Assume g set by user, calc e
      epas = v + iSum/gpas

    } else {            // Assume e set by user, calc g
      if (epas != v) {
        gpas = iSum/(epas - v)
      } else { gpas=0 }
    }
    if (gpas < 0) errorMsg("bad g", gpas)
    if (epas < -100 || epas > 0) {
      printf(".")
      // printf("%s erev: %g %g %g\n",secname(),e_pas,ina,ik)
    }
  }
  pasvals[0]=gpas pasvals[1]=epas
}

proc finish () {
  /* Called following completion of continueRun() */

finishMisc()

if (graph_flag == 1) {
  if (iv_flag == 1) {
    flushPlot()
    doEvents()
  } else {
    graphmode(-1)
    plt(-1)
  }
}

if (print_flag == 1) {
  wopen("")
}
}

/*------------------------------------------------------------
User definable GRAPHICS and PRINTING routines
------------------------------------------------------------*/

proc outputData() {
  // Default procedure - if outputData() doesn't exist in the run file

  if (graph_flag == 1) {
    if (iv_flag == 1) {
      Plot()
      rt = stopsw()
      if (rt > realtime) {
        realtime = rt
        fastflushPlot()
        doNotify()
        if (realtime == 2 && eventcount > 50) {
          eventslow = int(eventcount/50) + 1
        }
        eventcount = 0
      }else{
        eventcount = eventcount + 1
        if ((eventcount%eventslow) == 0) {
          doEvents()
        }
      }

    } else {
      graph(t)
    }
  }

  if (print_flag == 1) { 
    if (t%printStep <= printStep) { printOut() }
  }
}

proc printOut() {
  /* Default procedure - if printOut() doesn't exist in the run file */
}

proc initGraph() {
  /* Default procedure - if initGraph() doesn't exist in the run file */

graph()
}

proc initPrint() {
  /* Default procedure - if initPrint() doesn't exist in the run file */

wopen(output_file)
}

/*------------------------------------------------------------
User definable BATCH RUN routines
------------------------------------------------------------*/

proc nextrun() {
  // Called from finishmisc() following completion of batch in an autorun
  wopen("")   
  runnum = runnum + 1
  sprint(output_file,"data/b%s.%02d", datestr, runnum)
}                       

// commands for emacs
proc update_runnum() { 
  runnum = $1
  sprint(output_file,"data/%s.%02d", datestr, runnum)
  print "^&^ (progn (sim-index-revert)(setq sim-runnum ",runnum,"))" }
proc nrn_write_index() { printf("&INDEX& %s\n",$s1) }
proc nrn_update () { elisp("nrn-update") }
proc nrn_message () { printf("!&! %s\n",$s1) } 

/*------------------------------------------------------------
User definable INITIALIZATION and FINISH routines
------------------------------------------------------------*/

// Default procedure - if initMisc1() doesn't exist in the run file 
// Initializations performed prior to finitialize() 
// This should contain point process inits and inits for any changes 
//        made to the NEURON block of any local mod file 
proc initMisc1() { }

// Default procedure - if initMisc2() doesn't exist in the run file 
// Initializations performed after finitialize() 
proc initMisc2() { }

// Default procedure - if finishMisc() doesn't exist in the run file 
proc finishMisc() { }

/*------------------------------------------------------------
Miscellaneous routines
------------------------------------------------------------*/

proc errorMsg() {
  /* Print warning, assumes arg1 is string and arg2 if present is a
  variable value */

sectionname(section)

if (numarg() == 0) {
  printf("ERROR in errorMsg(): Needs at least 1 argument.\n")
} else if (numarg() == 1) {
  printf("ERROR: %s in section %s.\n", $s1, section)
} else {
  printf("ERROR: %s in section %s (var=%g).\n", $s1, section, $2)
}
}

proc clear() {
  /* Clear non-interviews plot window */
plt(-3)
}

func mod() { local x, y
  /* Mod function for non-integers */

x=$1
y=$2

return (x/y - int(x/y))
}

proc whatSection() { print secname() }

proc print_pp_location() { local x //arg1 must be a point process
   x = $o1.get_loc()
   sectionname(temp_string_)
   printf("%s located at %s(%g)\n", $o1, temp_string_, x)
   pop_section()
}

//* set method with method()
proc method () { local prc
  if (numarg()==0) {
    if (cvode_active() && cvode_local()) { printf("\tlocal atol=%g\n",cvode.atol)
    } else if (cvode_active()) { printf("\tglobal atol=%g\n",cvode.atol)
    } else if (secondorder==2) { printf("\tCrank-Nicholson dt=%g\n",dt)
    } else if (secondorder==0) { printf("\timplicit dt=%g\n",dt)
    } else { printf("\tMethod unrecognized\n") }
    return
  }
  if (numarg()==2) prc = $2 else prc=0
  finitialize()
  if (strcmp($s1,"global")==0) {
    cvode_active(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"local")==0) {
    cvode_local(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"implicit")==0) {
    secondorder=0
    cvode_active(1)
    cvode_active(0)
    if (prc) dt=prc
  } else if (strcmp($s1,"CN")==0) {
    secondorder=2
    cvode_active(1) // this turns off local
    cvode_active(0)
    if (prc) dt=prc
  } else {
    printf("Integration method %s not recognized\n",$s1)
  }
}

//* Load local modifications to nrnoc.hoc and default.hoc
load_file("local.hoc")

if (xwindows && graph_flag) { nrnmainmenu() } // pwman_place(50,50)

print "Init complete.\n"

Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex PLoS ONE 2012 7(10):e47251

References and models cited by this paper

References and models that cite this paper

Almassy N, Edelman GM, Sporns O (1998) Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. Cereb Cortex 8:346-61 [PubMed]

Baker SN, Kilner JM, Pinches EM, Lemon RN (1999) The role of synchrony and oscillations in the motor output. Exp Brain Res 128:109-17 [PubMed]

Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A 99:523-8

Carnevale NT, Hines ML (2006) The NEURON Book

Chadderdon G (2009) A neurocomputational model of the functional role of dopamine in stimulus-response task learning and performance Ph.D. thesis, Indiana University [Journal]

Cools R (2006) Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. Neurosci Biobehav Rev 30:1-23 [PubMed]

Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23-30 [PubMed]

Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441:876-9 [PubMed]

Demiris Y, Dearden A (2005) From motor babbling to hierarchical learning by imitation: a robot developmental pathway From Animals To Animats

Der R, Martius G (2006) (2006) From motor babbling to purposive actions: Emerging self-exploration in a dynamical systems approach to early robot development From Animals to Animats 9:406-421

Edelman GM (1987) Neural Darwinism: The Theory of Neural Group Selection

Farries MA, Fairhall AL (2007) Reinforcement learning with modulated spike timing dependent synaptic plasticity. J Neurophysiol 98:3648-65 [PubMed]

Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771-80 [PubMed]

Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19:1468-502 [PubMed]

Frank MJ, O'reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497-517 [PubMed]

Frank MJ, Seeberger LC, O`Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940-3 [Journal] [PubMed]

   Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005) [Model]

Hecht-nielsen R (1989) Theory of the backpropagation neural network Neural Networks IJCNN., International Joint Conference on. IEEE :593-605

Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304-9 [PubMed]

Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481-7 [PubMed]

Izhikevich EM (2007) Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cereb Cortex 17(10):2443-2452 [Journal] [PubMed]

   Linking STDP and Dopamine action to solve the distal reward problem (Izhikevich 2007) [Model]

Joel D, Niv Y, Ruppin E (2005) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15:535-47 [PubMed]

Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433:638-43 [PubMed]

Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human decision-making. Science 318:594-8 [PubMed]

Kohonen T (1990) The self-organizing map Proc IEEE 78:1464-1480

Luft AR, Schwarz S (2009) Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 27:415-21 [PubMed]

Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Methods 171:309-15 [Journal] [PubMed]

   The virtual slice setup (Lytton et al. 2008) [Model]

Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175-81 [PubMed]

   Tonic-clonic transitions in a seizure simulation (Lytton and Omurtag 2007) [Model]

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301-4 [PubMed]

Molina-Luna K, Pekanovic A, Rohrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti MS, Luft (2009) Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One 4:e7082-21 [PubMed]

Mufson EJ, Pandya DN (1984) Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J Comp Neurol 225:31-43 [PubMed]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

O'Neill M, Brown V (2007) The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats Neurobiology of Learning and Memory 88:75-81

Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, Rudarakanchana N, Hal (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137:149-63 [PubMed]

Potjans W, Morrison A, Diesmann M (2009) A spiking neural network model of an actor-critic learning agent. Neural Comput 21:301-39 [PubMed]

Reynolds JN, Wickens JR (2005) Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 15:507-21 [PubMed]

Robbins TW, Giardini V, Jones GH, Reading P, Sahakian BJ (1990) Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task. Behav Brain Res 38:243-61 [PubMed]

Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87:392-403 [PubMed]

Rumelhart D, Mccleland J (1986) Parallel Distributed Processing

Sanchez J, Tarigoppula A, Choi J, Marsh B, Chhatbar P (2011) Control of a center-out reaching task using a reinforcement learning brain-machine interface Neural Engineering (NER), 2011 5th International IEEE-EMBS Conference on. IEEE :525-528

Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27 [Journal] [PubMed]

Seung HS (2003) Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40:1063-73 [PubMed]

Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848-51 [PubMed]

Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335-8 [PubMed]

Singer W (2003) Synchronization, binding and expectancy The handbook of brain theory and neural networks, Arbib MA, ed. pp.1136

Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737-42 [PubMed]

Sober SJ, Brainard MS (2009) Adult birdsong is actively maintained by error correction. Nat Neurosci 12:927-31 [PubMed]

Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919-26 [PubMed]

Sporns O, Alexander WH (2005) Neuromodulation and plasticity in an autonomous robot. Neural Netw 15:761-74 [PubMed]

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction [Journal]

   A reinforcement learning example (Sutton and Barto 1998) [Model]

Takechi H, Eilers J, Konnerth A (2000) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757-60 [PubMed]

Tesauro G (1995) Temporal difference learning and TD-Gammon Comm ACM 38:58-68

Thorndike E (1911) Animal intelligence

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520-2 [PubMed]

Tumer EC, Brainard MS (2007) Performance variability enables adaptive plasticity of 'crystallized' adult birdsong. Nature 450:1240-4 [PubMed]

Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040-2 [PubMed]

VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28:1-4 [PubMed]

Wanjerkhede SM, Bapi RS (2007) Modeling the sub-cellular signaling pathways involved in reinforcement learning at the striatum. Prog Brain Res 168:193-206 [PubMed]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

(61 refs)