Reinforcement learning of targeted movement (Chadderdon et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144538
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
Reference:
1 . Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex PLoS ONE 2012 7(10):e47251
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Reinforcement Learning; Reward-modulated STDP;
Implementer(s): Neymotin, Sam [samn at neurosim.downstate.edu]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Dopamine; Gaba; Glutamate;
/
arm1d
README
drspk.mod *
infot.mod *
intf6_.mod *
intfsw.mod *
misc.mod *
nstim.mod *
stats.mod *
updown.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc *
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
intfsw.hoc *
labels.hoc *
local.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
run.hoc
samutils.hoc *
sense.hoc *
setup.hoc *
sim.hoc
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
units.hoc *
xgetargs.hoc *
                            
: $Id: nstim.mod,v 1.24 2006/04/03 19:18:18 billl Exp $

NEURON	{ 
  ARTIFICIAL_CELL NStim
  RANGE interval, number, start, end
  RANGE noise,type,id
}

PARAMETER {
  interval	= 10 (ms) <1e-9,1e9>: time between spikes (msec)
  number	= 10 <0,1e9>	: number of spikes
  start		= 50 (ms)	: start of first spike
  noise		= 0 <0,1>	: amount of randomeaness (0.0 - 1.0)
  end		= 1e9 (ms)	: time to terminate train
}

ASSIGNED {
  event (ms)
  on
  endt (ms)
  type
  id
}

CONSTRUCTOR {
  VERBATIM 
  { if (ifarg(1)) { id= *getarg(1); } else { id= -1; }
    if (ifarg(2)) { type= *getarg(2); } else { type= 1; }
  }
  ENDVERBATIM
}

PROCEDURE seed (x) {
  set_seed(x)
}

INITIAL {
  on = 0
  if (noise < 0) { noise = 0 }
  if (noise > 1) { noise = 1 }
  if (interval <= 0.) { interval = .01 (ms) }
  if (start>=0 && number>0 && end>0) {
    event = start + invl(interval) - interval*(1. - noise)
    if (event < 0) { event = 0 }
    net_send(event, 3)
  }
}	

PROCEDURE init_sequence (t(ms)) {
  if (number > 0) {
    on = 1
    event = t
    endt = t + 1e-6 + interval*(number-1)
  }
}

FUNCTION invl (mean (ms)) (ms) {
  if (noise == 0) {
    invl = mean
  } else {
    invl = (1. - noise)*mean + noise*mean*exprand(1)
  }
}

NET_RECEIVE (w) {
  if (flag == 0) { : external event
    if (w > 0 && on == 0) { : turn on spike sequence
      init_sequence(t)
      net_send(0, 1)
    } else if (w < 0 && on == 1) { : turn off spiking
      on = 0
    }
  }
  if (flag == 3) { : from INITIAL
    if (on == 0) {
      init_sequence(t)
      net_send(0, 1)
    }
  }
  if (flag == 1 && on == 1) {
    net_event(t)
    event = event + invl(interval)
    if (event > endt || event > end) {
      on = 0
    } else {
      net_send(event - t, 1)
    }
  }
}

FUNCTION fflag () { fflag=1 }

Loading data, please wait...