Hopfield and Brody model (Hopfield, Brody 2000) (NEURON+python)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144549
Demonstration of Hopfield-Brody snychronization using artificial cells in NEURON+python.
References:
1 . Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci U S A 98:1282-7 [PubMed]
2 . Hopfield JJ, Brody CD (2000) What is a moment? "Cortical" sensory integration over a brief interval. Proc Natl Acad Sci U S A 97:13919-24 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Pattern Recognition; Coincidence Detection; Temporal Pattern Generation; Synchronization; Attractor Neural Network;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu];
/
hoppy
readme.txt
invlfire.mod
misc.mod *
stats.mod
vecst.mod *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
grvec.hoc *
init.hoc
labels.hoc
local.hoc *
misc.h
mysetup.py
net.py
nqs.hoc *
nqs_utils.hoc *
nrnoc.hoc *
pyinit.py
simctrl.hoc *
syncode.hoc *
                            
from neuron import h
import os
import sys
import datetime
import shutil
import pickle
from math import sqrt, pi
import numpy
import types

h("objref p")
h("p = new PythonObject()")

try:
    import pylab
    from pylab import plot, arange, figure
    my_pylab_loaded = True
except ImportError:
    print "Pylab not imported"
    my_pylab_loaded = False

def htype (obj): st=obj.hname(); sv=st.split('['); return sv[0]
def secname (obj): obj.push(); print h.secname() ; h.pop_section()
def psection (obj): obj.push(); print h.psection() ; h.pop_section()

allsecs=None #global list containing all NEURON sections, initialized via mkallsecs

# still need to generate a full allsecs
def mkallsecs ():
  """ mkallsecs - make the global allsecs variable, containing
      all the NEURON sections.
  """
  global allsecs
  allsecs=h.SectionList() # no .clear() command
  roots=h.SectionList()
  roots.allroots()
  for s in roots:
    s.push()
    allsecs.wholetree()
  return allsecs

#forall syntax - c gets executed, allsecs has Sections
def forall (c):
    """ NEURON forall syntax - iterates through all the sections available
        note that there's a dummy loop variable called s used in this function,
        so any command that needs to access a section should be via s.
        example: forall('print s.name()') , will print all the section names.
        Also note that this function uses a global list, 'allsecs', which may
        need to get re-initialized when new sections are created, via the mkallsecs
        function above.
    """
    global allsecs
    if (type(allsecs)==types.NoneType): mkallsecs()
    for s in allsecs: exec(c)

#forsec syntax - executes command for each section who's name
# contains secname as a substring
def forsec (secref="soma",command=""): 
    """ NEURON forsec syntax - iterates over all sections which have a substring
        in their names matching secref argument. command is executed if match found.
        this function also utilizes the allsecs global variable.
    """
    global allsecs
    if (type(allsecs)==types.NoneType): mkallsecs()
    if (type(secref)==types.StringTypes[0]):
        for s in allsecs:
            if s.name().count(secref) > 0:
                exec(command)
    else:
        for s in secref: exec(command)


Loading data, please wait...