Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. 6:53. Epub 2012 Jul 24. Front Comput Neurosci. 6:53:1-12 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-6 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-6 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
mod
alphasyndiffeq.mod *
alphasynkin.mod *
alphasynkint.mod *
ampa.mod *
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod *
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod
naf_tcr.mod *
naf2.mod
nap.mod
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod *
                            
NEURON {
	POINT_PROCESS GABAA
	RANGE tau, e, i
	NONSPECIFIC_CURRENT i
	GLOBAL gfac
: for network debugging
:	USEION gaba1 WRITE igaba1 VALENCE 0
:	USEION gaba2 WRITE igaba2 VALENCE 0
:	RANGE srcgid, targid, comp, synid
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau = 0.1 (ms) <1e-9,1e9>
	e = 0	(mV)
	gfac = 1
}

ASSIGNED {
	v (mV)
	i (nA)
:	igaba1 (nA)
:	igaba2 (nA)
:	srcgid
:	targid
:	comp
:	synid
}

STATE {
	g (uS)
}

INITIAL {
	g=0
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	i = gfac*g*(v - e)
:	igaba1 = g
:	igaba2 = -g
}

DERIVATIVE state {
	g' = -g/tau
}

NET_RECEIVE(weight (uS)) {
	g = g + weight
}

Loading data, please wait...