Modulation of hippocampal rhythms by electric fields and network topology (Berzhanskaya et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144589
“… Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. … The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. …”
Reference:
1 . Berzhanskaya J, Chernyy N, Gluckman BJ, Schiff SJ, Ascoli GA (2013) Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J Comput Neurosci 34:369-89 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Brain Rhythms;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell;
/
BerzThetaGamm2013
readme.txt
h.mod
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3.mod *
nax.mod *
xtra.mod
CurRun.ses
GraphandElf.ses
HipNetStart.hoc
interpxyz.hoc
mosinit.hoc
netwOPb.hoc
setpointers.hoc
                            
// set up the pointers after the sections have been created

proc setpointers() {
  grindaway()  // in interpxyz.hoc, determines interpolated locations of nodes
/*
  forall for (x) if (x!=0 && x!=1) setpointer im_xtra(x), i_membrane(x)
  forall for (x) if (x!=0 && x!=1) setpointer ex_xtra(x), e_extracellular(x)
*/
  forall {
    if (ismembrane("xtra")) {
	for (x) if (x!=0 && x!=1) {
		setpointer im_xtra(x), i_membrane(x)
		setpointer ex_xtra(x), e_extracellular(x)
	}
    }
  }
}

//print "After any change to cell geometry or nseg, be sure to invoke setpointers()"

setpointers()

Loading data, please wait...