Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147141
Learning in the brain requires complementary mechanisms: potentiation and activity-dependent homeostatic scaling. We introduce synaptic scaling to a biologically-realistic spiking model of neocortex which can learn changes in oscillatory rhythms using STDP, and show that scaling is necessary to balance both positive and negative changes in input from potentiation and atrophy. We discuss some of the issues that arise when considering synaptic scaling in such a model, and show that scaling regulates activity whilst allowing learning to remain unaltered.
Reference:
1 . Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Abstract integrate-and-fire adaptive exponential (AdEx) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; STDP; Homeostasis;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
stdpscalingpaper
batchscripts
mod
README
alz.hoc
autotune.hoc *
basestdp.hoc *
batch.hoc *
batch2.hoc *
batchcommon
checkirreg.hoc *
clusterrun.sh
col.dot *
col.hoc *
comppowspec.hoc *
condisconcellfig.hoc *
condisconpowfig.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
e2hubsdisconpow.hoc *
e2incconpow.hoc *
filtutils.hoc *
geom.hoc *
graphplug.hoc *
grvec.hoc *
init.hoc *
labels.hoc *
load.hoc *
local.hoc *
makepopspikenq.hoc *
matfftpowplug.hoc *
matpmtmplug.hoc *
matpmtmsubpopplug.hoc *
matspecplug.hoc *
network.hoc *
nload.hoc *
nqpplug.hoc *
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
plot.py
plotbatch.sh
plotbatchcluster.sh
powchgtest.hoc *
python.hoc *
pywrap.hoc *
redE2.hoc *
run.hoc
runsim.sh
setup.hoc *
shufmua.hoc *
sim.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
stdpscaling.hoc
syncode.hoc *
vsampenplug.hoc *
writedata.hoc
xgetargs.hoc *
                            
// $Id: drline.hoc,v 1.41 2011/02/15 14:05:02 billl Exp $

print "Loading drline.hoc..."

// click and drag left button to draw lines on top of a figure interactively
// select graph to draw on with setdrl(Graph[])
// set color with clr, line width with lne
// select 'Draw curve' for continuous drawing
// select 'Arrow' to place an arrow pointing according to direction of drag

drlflush=1 //whether to flush line drawings each drline call

//* drline(x0,y0,x1,y1,OPT graph or color) 
proc drline () { local color,line
  if (numarg()==0) { print "drline(x0,y0,x1,y1[,g,col,line])"
    return }
  if (numarg()>4) { 
    if (argtype(5)==0) { color=$5 
                         if (numarg()>5) line=$6
    } else {             graphItem = $o5 
                         if (numarg()>5) color=$6
                         if (numarg()>6) line=$7      }}
  graphItem.beginline(color,line)
  graphItem.line($1,$2)
  graphItem.line($3,$4)
  if(drlflush) graphItem.flush()
}

//* set to drawlines on top of fig
proc setdrl () {
  g=$o1 // select this graph for further drawing
  xpanel("")
  $o1.menu_tool("Draw line","drl")
  $o1.menu_tool("Draw curve","drc")
  $o1.menu_tool("Label","drw")
  $o1.menu_tool("Arrow","dra")
  $o1.menu_tool("Circle","drci")
  $o1.menu_tool("Rectangle","drr")
  xvalue("Color","clr",1,"",1)
  xvalue("Line","lne",1,"",1)
  xbutton("Erase","g.erase_all()")
  xpanel()
  $o1.exec_menu("Draw line")
}

//* draw line interactively on top of fig
// interesting that this should work at all since x0,y0 local but still preserving their
// values across multiple calls
proc drl ()  { local x0,y0,type,x,y,keystate
  type=$1 x=$2 y=$3 keystate=$4
  if (type==2) {x0=x y0=y}
  if (type==3) drline(x0,y0,x,y,clr,lne)
}

//* draw circle interactively on top of fig
// drci(2,0,0,0) drci(3,1,0,0)
proc drci ()  { local a,x0,y0,type,x,y,keystate,ii,rad localobj xv,yv
  type=$1 x=$2 y=$3 keystate=$4
  if (type==2) {x0=x y0=y}
  if (type==3) { rad=sqrt((x-x0)^2+(y-y0)^2) 
    a=allocvecs(xv,yv) vrsz(360,xv,yv)
    print "Circle: ",x0,y0,rad
    yv.circ(xv,x0,y0,rad)
    yv.line(g,xv,clr,lne)
    dealloc(a)
  }
}

//* draw retangle interactively on top of fig
proc drr ()  { local x0,y0,type,x,y,keystate
  type=$1 x=$2 y=$3 keystate=$4
  if (type==2) {x0=x y0=y}
  if (type==3) { drline(x0,y0,x0,y,clr,lne)
    drline(x,y0,x,y,clr,lne) drline(x,y,x0,y,clr,lne) drline(x,y0,x0,y0,clr,lne) }
}

//* draw arrow interactively on top of fig
proc dra ()  { local xsz,ysz,type,x,y,keystate,rot
  type=$1 x=$2 y=$3 keystate=$4
  xsz=0.1*(g.size(2)-g.size(1)) // 10% of size
  ysz=0.1*(g.size(4)-g.size(3))
  if (type==2) {x0=x y0=y}
  if (type==3) {
    if (y==y0) {
      if (x>x0) rot=-90 else rot=90
    } else {
      rot=-atan((x-x0)/(y-y0))/2/PI*360
      if ((y-y0)<=0) rot+=180
    }
    g.glyph(arrow(),x,y,xsz,ysz,rot)
  }
}

//* draw curve interactively on top of fig
proc drc ()  { local x0,y0,type,x,y,keystate
  type=$1 x=$2 y=$3 keystate=$4
  if (type==2) { x0=x y0=y
  } else if (type==1) {
    drline(x0,y0,x,y,clr,lne)
    x0=x y0=y
  } else if (type==3) drline(x0,y0,x,y,clr,lne)
}

//* write label
proc drw ()  { local x0,y0,type,x,y,keystate
  type=$1 x=$2 y=$3 keystate=$4
  if (type==2) { 
   string_dialog("Label: ",tstr) 
   g.label(x,y,tstr,1,1,0.5,0.5,clr)
  }
}

obfunc arrow () { localobj o
  o=new Glyph()
  o.m(0,0)  o.l(0,2) o.s(1,4) // draw vertical line
  o.m(0,0)  o.l(0,-2) o.s(1,4) // draw vertical line
  o.m(0,-2) o.l(-2,0) o.s(1,4)
  o.m(0,-2) o.l(2,0) o.s(1,4)
  return o
}

//* hist(g,vec,min,max,bins)
{clr=1 hflg=1 ers=1 sym=1 pflg=0 lin=4 hbup=0} 
declared("hfunc")
// clr:color, hflg=1 draw lines; 2 draw boxes; 3 fill in; ers=erase; 
// pflg=1 normalize hist by size of $o2, so will be probability instead of count
// pflg=2 turn hist upside down
// pflg=3 operate on values with hfunc()
// style determined by hflg
// hflg==0 lines with dots
// hflg==0.x offset lines with dots
// hflg==1 outlines but not down to zero
// hflg==2 outlines with lines down to zero
// hflg==3 just dots
// hflg==3.x lines between dots
// hbup=1 // move baseline up by this amount
func hist () { local a,b,c,min,max,wid,bins,ii,jj,offset,x,y
  if (numarg()==0) { printf("hist(g,vec,min,max,bins)\n") return 0}
  if ($o2.size<2)  { printf("hist: $o2 too small\n",$o2) return -1}
  if ($o2.min==$o2.max)  { printf("hist: %s all one value: %g\n",$o2,$o2.min) return -1}
  if (numarg()==5) {min=$3 max=$4 bins=$5 
  } else if (numarg()==4) { min=0 max=$3 bins=$4 
  } else if (numarg()<=3) { 
    if ((min=0.95*$o2.min)<0) min=1.05*$o2.min
    if ((max=1.05*$o2.max)<0) max=0.95*$o2.max
    bins=100
    if (min>0) min*=0.9 else min*=1.1
    if (max>0) max*=1.1 else max*=0.9
    if (numarg()==3) bins=$3
  }
  wid=(max-min)/bins
  // print min,max,max-wid,wid
  a=b=c=allocvecs(3) b+=1 c+=2
  offset=0 x=-1
  if (ers) $o1.erase_all()
  mso[c].hist($o2,min,bins,wid) // c has values
  if(pflg==1) mso[c].div(mso[c].sum) // normalize to sum to 1
  if(pflg==2) mso[c].mul(-1)
  if(pflg==3) hfunc(mso[c])
  mso[a].resize(2*mso[c].size())
  mso[a].indgen(0.5) 
  mso[a].apply("int") 
  mso[b].index(mso[c], mso[a]) 
  mso[a].mul(wid) mso[a].add(min)
  mso[b].rotate(1)
  mso[b].x[0] = 0 
  mso[b].append(mso[b].x[mso[b].size-1],0)
  mso[b].add(hbup)
  mso[a].append(max,max)
  if (hflg==1 || hflg==2) { 
    mso[b].line($o1, mso[a],clr,lin)
    if (hflg==2) for vtr(&x,mso[a]) drline(x,0,x,mso[b].x[i1],$o1,clr,lin)
  } else if (int(hflg)==0 || hflg>=3) { 
    if (hflg%1!=0) offset=hflg*wid // use eg -0.5+ii/8 to move back to integer
    mso[a].indgen(min,max-wid,wid)
    mso[a].add(wid/2+offset)
    // print mso[a].min,mso[a].max
    // mso[c].mark($o1,mso[a],"O",6,clr,2) // this will place points where 0 count
    for jj=0,mso[a].size-1 if (mso[c].x[jj]!=0) {
      if (hflg!=3 && hflg%1!=0) drline(mso[a].x[jj],0,mso[a].x[jj],mso[c].x[jj],$o1,clr,lin)
      if (hflg==4) {
        if (x!=-1) drline(x,y,mso[a].x[jj],mso[c].x[jj],$o1,clr,lin)
        x=mso[a].x[jj] y=mso[c].x[jj]
      }
      $o1.mark(mso[a].x[jj],mso[c].x[jj],sg(sym).t,10,clr,2) // don't place points with 0 count
    }
  }
  $o1.flush()
  $o1.size(min,max,0,mso[b].max)
  dealloc(a)
  return 1
}

// barplot(g,yvec,xvec[,bar_width]) 
// barplot(g,yvec,xvec[,bar_width,color_vec]) -- for multicolored bars -- each point has a color
// barplot(g,yvec,xvec[,bar_width,color_vec,error_vec]) -- error_vec plots the error
scribble=0
func barplot () { local a,sz,wid,ii,jj,x,y,mulcol localobj go,vx,vy,v1,vcol
  if (numarg()==0) {
    printf("barplot(g,yvec,xvec[,bar_width]), scribble=1 to 'fill in'\n") 
    printf("set scribble=1 to fill in with single color (based on clr)\n")
    printf("barplot(g,yvec,xvec[,bar_width,color_vec]):multicolored bars-each point has a color\n")
    printf("barplot(g,yvec,xvec[,bar_width,color_vec,error_vec]):add +/- error to each bar\n")
    return 0}
  if ((sz=$o2.size)!=$o3.size)  { printf("barplot: x,y vectors differ in size\n") return -1}
  go=$o1 $o3.sort
  if (argtype(4)==0)  wid=$4 else wid=1
  if (argtype(5)==1)  {vcol=$o5 mulcol=-1
    if (sz!=vcol.size) { printf("barplot: color vec wrong size: %d %d\n",sz,vcol.size) return -1}  
  } else if (argtype(5)==0) mulcol=$5 else mulcol=0
  wid/=2
  // print min,max,max-wid,wid
  a=allocvecs(vx,vy,v1)
  if (ers) go.erase_all()
  for vtr2(&x,&y,$o3,$o2,&ii)  { 
    vx.append(x-wid,x-wid,x+wid,x+wid)
    vy.append(0,y,y,0)
  }
  if (mulcol) {
    for vtr2(&x,&y,$o3,$o2,&jj)  { 
      if (mulcol==-1) clr=vcol.x[jj] else clr=mulcol
      vrsz(0,vx,vy)
      vx.append(x-wid,x-wid)
      vy.append(0,y)
      for (ii=0;ii<2*wid;ii+=(wid/100)) { 
        vx.add(wid/100) 
        vy.line(go, vx, clr, 4)
      }
    }
    vy.line(go, vx, clr, 4)
  } else if (scribble) {
    vrsz(0,vx,vy)
    for vtr2(&x,&y,$o3,$o2,&ii)  { 
      vx.append(x-wid,x-wid,x-wid)
      vy.append(0,y,0)
    }
    for (ii=0;ii<2*wid;ii+=(wid/100)) { 
      vx.add(wid/100) 
      vy.line(go, vx, clr, 4)
    }
    vy.line(go, vx, clr, 4)
  } else vy.line(go, vx, clr, lne)
  if(numarg()>5) $o2.ploterr(go, $o3, $o6, 15, 1, 3)
  go.flush()
  go.size(vx.min-wid,vx.max+wid,0,vy.max)
  dealloc(a)
  return 1
}

proc smgs () { local a,b,c,min,max,wid,bins,ii,jj,offset,x,y localobj v1
  if ($o2.size<2)  { printf("smgs: $o2 too small\n",$o2) return -1}
  if ($o2.min==$o2.max)  { printf("smgs: %s all one value: %g\n",$o2,$o2.min) return -1}
  if (numarg()==5) {min=$3 max=$4 bins=$5 
  } else if (numarg()==4) { min=0 max=$3 bins=$4 
  } else if (numarg()<=3) { 
    if ((min=0.95*$o2.min)<0) min=1.05*$o2.min
    if ((max=1.05*$o2.max)<0) max=0.95*$o2.max
    bins=100
    if (min>0) min*=0.9 else min*=1.1
    if (max>0) min*=1.1 else max*=0.9
    if (numarg()==3) bins=$3
  }
  wid=(max-min)/bins
  // print min,max,max-wid,wid
  a=b=c=allocvecs(3,1e4) b+=1 c+=2
  offset=0 x=-1
  if (ers) $o1.erase_all()
  mso[a].indgen(min,max,wid)
  if (0) {
    mso[c].smgs($o2,min,max,wid,wid*wid/4) // c has values
    mso[c].line($o1, mso[a],clr,4)
  } else {
    v1=$o2.sumgauss(min,max,wid,wid/2) // c has values
    v1.line($o1, mso[a],clr,4)
  }
}

//* a few drawing utilities from sam (not too spectacular)
 
//** drawhticks(ticksz,minx,maxx,linewidth,$5-$numarg() == y position of horizontal ticks)
// draw horizontal ticks of a view box along left/right of box
proc drawhticks () { local ticksz,minx,maxx,lw,i
  ticksz=$1 minx=$2 maxx=$3 lw=$4
  for i=5,numarg() {
    drline(minx,$i,minx+ticksz,$i,g,1,lw)    drline(maxx,$i,maxx-ticksz,$i,g,1,lw)
  }
}

//** drawvticks(ticksz,miny,maxy,linewidth,$5-$numarg() == x position of vertical ticks)
// draw vertical ticks of a view box along top/bottom of box
proc drawvticks () { local ticksz,miny,maxy,lw,i
  ticksz=$1 miny=$2 maxy=$3 lw=$4
  for i=5,numarg() {
    drline($i,miny,$i,miny+ticksz,g,1,lw)    drline($i,maxy,$i,maxy-ticksz,g,1,lw)
  }
}

//** drawbox(minx,maxx,miny,maxy[,line,graph]) - draw box
proc drawbox () { local minx,maxx,miny,maxy,ln localobj myg
  minx=$1 maxx=$2 miny=$3 maxy=$4
  if(numarg()>4)ln=$5 else ln=3
  if(numarg()>5)myg=$o6 else myg=g
  drline(minx,miny,minx,maxy,myg,1,ln) //bottom
  drline(minx,miny,maxx,miny,myg,1,ln) //left
  drline(minx,maxy,maxx,maxy,myg,1,ln) //top
  drline(maxx,miny,maxx,maxy,myg,1,ln) //right
}

Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20

References and models cited by this paper

References and models that cite this paper

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Ko (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686-9

Carnevale NT, Hines ML (2006) The NEURON Book

Chandler B, Grossberg S (2012) Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF. Neural Netw 25:21-9

Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23-30 [PubMed]

Frohlich F, Bazhenov M, Sejnowski TJ (2008) Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709-20 [PubMed]

Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [PubMed]

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419-57 [PubMed]

Neymotin S, Kerr C, Francis J, Lytton W (2011) Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex Signal Processing in Medicine and Biology Symposium (SPMB), IEEE :1-6

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Prieto G, Parker R, Vernon_iii F (2009) A Fortran 90 library for multitaper spectrum analysis Computers Geosciences 35:1701-1710

Rowan M (2011) Effects of Compensation, Connectivity and Tau in a Computational Model of Alzheimer's Disease Proc. IJCNN, IEEE :543-550

Rowan M (2012) Information-selectivity of Beta-amyloid pathology in an associative memory model. Front Comput Neurosci 6:2-23 [PubMed]

Rutherford LC, Nelson SB, Turrigiano GG (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521-30 [PubMed]

Small DH (2008) Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103-8 [PubMed]

Trasande CA, Ramirez JM (2007) Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 24:154-64 [PubMed]

Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89-103 [PubMed]

Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422-35 [PubMed]

van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21 [PubMed]

Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37-44 [PubMed]

Eguchi A, Neymotin SA and Stringer SM (2014) Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity 8:16. doi: Front. Neural Circuits 8:16 [Journal]

   Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014) [Model]

Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of 2-joint virtual arm reaching in a computer model of sensorimotor cortex Neural Computation 25(12):3263-93 [Journal] [PubMed]

   Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013) [Model]

Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model Neural Computation 27(4):898-924 [Journal] [PubMed]

   Neuronal dendrite calcium wave model (Neymotin et al, 2015) [Model]

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [Journal] [PubMed]

   Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014) [Model]

(27 refs)