Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147867
These simulations examined the atrophy induced changes in electrophysiological properties of CA3 pyramidal neurons. We found these neurons change from bursting to regular spiking as atrophy increases. Region-specific atrophy induced region-specific increases in synaptic excitability in a passive dendritic tree. All dendritic compartments of an atrophied neuron had greater synaptic excitability and a larger voltage transfer to the soma than the control neuron.
Reference:
1 . Narayanan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103:3070-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Conductance distributions;
Implementer(s): Narayanan, Rishikesh [rishi at iisc.ac.in];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; AMPA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP; Glutamate;
/
CA3Atrophy
Input
README.html
ampa.mod
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
h.mod
kad.mod
kahp.mod *
kap.mod
kdr.mod *
nahh.mod *
0.png
25.png
35.png
75.png
Fig1D.hoc
Fig2D-E.hoc
Fig2F-G.hoc
Menu.png
mosinit.hoc
neuron.que
Neurons.inp
                            
TITLE Borg-Graham type generic K-DR channel
: INACTIVATING

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek		 (mV)
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=-32   (mV)
        vhalfl=-61   (mV)
        a0l=0.001      (/ms)
        a0n=0.03      (/ms)
        zetan=-5    (1)
        zetal=2    (1)
        gmn=0.4   (1)
        gml=1.0   (1)
}


NEURON {
	SUFFIX borgkdr
	USEION k READ ek WRITE ik
        RANGE gkdrbar,gkdr
        GLOBAL ninf,linf,taun,taul
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        gkdr
        taun
        taul
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n^3*l
	ik = gkdr*(v-ek)

}

FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {  
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+a)
        taul = betl(v)/(q10*a0l*(1 + a))
}








Loading data, please wait...