Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149415
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
Reference:
1 . Migliore M, McTavish T (2013) Olfactory Computation in Mitral-Granule Cell Circuits Encyclopedia of Computational Neuroscience, Jaeger D, Jung R, ed.
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Action Potentials; Intrinsic plasticity; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
MiglioreMcTavish2013
readme.html
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanetOB.mod *
forfig1-springer.hoc
forfig2.ses
forfig2-springer.hoc
forfig3-springer.hoc
gc-ka.hoc
mitral-lss.hoc
mosinit.hoc
screenshot1.png
screenshot2.png
screenshot3.png
                            
TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002

NEURON {
	SUFFIX kamt
	USEION k READ ek WRITE ik
	RANGE  gbar
	GLOBAL minf, mtau, hinf, htau
}

PARAMETER {
	gbar = 0.002   	(mho/cm2)	
								
	celsius
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0m=0.04
	vhalfm=-45
	zetam=0.1
	gmm=0.75

	a0h=0.018
	vhalfh=-70
	zetah=0.2
	gmh=0.99

	sha=9.9
	shi=5.7
	
	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
	hinf 		htau (ms)	 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m*h*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-24)/10)
        minf = 1/(1 + exp(-(v-sha-7.6)/14))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))

        hinf = 1/(1 + exp((v-shi+47.4)/6))
	htau = beth(v)/(qt*a0h*(1+alph(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}

FUNCTION alph(v(mV)) {
  alph = exp(zetah*(v-vhalfh)) 
}

FUNCTION beth(v(mV)) {
  beth = exp(zetah*gmh*(v-vhalfh)) 
}

Loading data, please wait...