Distributed synaptic plasticity and spike timing (Garrido et al. 2013)

 Download zip file 
Help downloading and running models
Accession:149913
Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular layer network. In response to mossy fiber bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time scale and allows the cerebellar granular layer to flexibly control burst transmission along the mossy fiber pathway.
Reference:
1 . Garrido JA, Ros E, D`Angelo E (2013) Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study Front. Comput. Neurosci. 7:64 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum interneuron granule cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB; EDLUT;
Model Concept(s): Long-term Synaptic Plasticity;
Implementer(s): Garrido, Jesus A [jesus.garrido at unipv.it];
Search NeuronDB for information about:  Cerebellum interneuron granule cell;
ModelDB scripts have detected that binary file '/Garridoetal2013/readme.txt' is not displayable. You may download the file to examine if desired.

<- Select file from this column.
Loading data, please wait...