%RBFGBELLS S function that convert a monodimensial entry (joint position in
%degree) into a multidemsional output. This output feeds to a mossy block
%
% function [sys,x0,str,ts] =
% RBFgauss(t,x,u,flag,PasoGrado,numRBFs,sigma)
%
%Function parameters:
%
%-PasoGrado. Degree step.the joint spatial state (from 0 to 180 degree)is
% divided in step, This parameter fixs the minimun step.
%
%-numRBFs. Indicate how many RBFs this block is going to use
%
%-sigma. Parameter that defines a gauss distribution.
%
%The symmetric Gaussian function depends on two parameters:
%
% GAUSSMF(X, [SIGMA, C]) = EXP(-(X - C).^2/(2*SIGMA^2));
%
% SIGMA GIVEN BY THE USER AND C GIVEN DYNAMICALLY
%
% See also: RAD2DEG, RBFGAUSS, RBFBELL, RBFTRIM, RBFTRAP, GAUSSMF.
% 2007 Niceto Luque Sola
%
function [sys,x0,str,ts] = fRBFgauss1optimal(t,x,u,flag,PasoGrado,numRBFs,sigma,limitinf,limitsup,numfig,ver)
persistent RBF1s
%SFUNTMPL General M-file S-function template
% With M-file S-functions, you can define you own ordinary differential
% equations (ODEs), discrete system equations, and/or just about
% any type of algorithm to be used within a Simulink block diagram.
%
% The general form of an M-File S-function syntax is:
% [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
% What is returned by SFUNC at a given point in time, T, depends on the
% value of the FLAG, the current state vector, X, and the current
% input vector, U.
%
% FLAG RESULT DESCRIPTION
% ----- ------ --------------------------------------------
% 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
% initial state in X0, state ordering strings
% in STR, and sample times in TS.
% 1 DX Return continuous state derivatives in SYS.
% 2 DS Update discrete states SYS = X(n+1)
% 3 Y Return outputs in SYS.
% 4 TNEXT Return next time hit for variable step sample
% time in SYS.
% 5 Reserved for future (root finding).
% 9 [] Termination, perform any cleanup SYS=[].
%
%
% The state vectors, X and X0 consists of continuous states followed
% by discrete states.
%
% Optional parameters, P1,...,Pn can be provided to the S-function and
% used during any FLAG operation.
%
% When SFUNC is called with FLAG = 0, the following information
% should be returned:
%
% SYS(1) = Number of continuous states.
% SYS(2) = Number of discrete states.
% SYS(3) = Number of outputs.
% SYS(4) = Number of inputs.
% Any of the first four elements in SYS can be specified
% as -1 indicating that they are dynamically sized. The
% actual length for all other flags will be equal to the
% length of the input, U.
% SYS(5) = Reserved for root finding. Must be zero.
% SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
% has direct feedthrough if U is used during the FLAG=3
% call. Setting this to 0 is akin to making a promise that
% U will not be used during FLAG=3. If you break the promise
% then unpredictable results will occur.
% SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
% X0 = Initial state conditions or [] if no states.
%
% STR = State ordering strings which is generally specified as [].
%
% TS = An m-by-2 matrix containing the sample time
% (period, offset) information. Where m = number of sample
% times. The ordering of the sample times must be:
%
% TS = [0 0, : Continuous sample time.
% 0 1, : Continuous, but fixed in minor step
% sample time.
% PERIOD OFFSET, : Discrete sample time where
% PERIOD > 0 & OFFSET < PERIOD.
% -2 0]; : Variable step discrete sample time
% where FLAG=4 is used to get time of
% next hit.
%
% There can be more than one sample time providing
% they are ordered such that they are monotonically
% increasing. Only the needed sample times should be
% specified in TS. When specifying than one
% sample time, you must check for sample hits explicitly by
% seeing if
% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
% is within a specified tolerance, generally 1e-8. This
% tolerance is dependent upon your model's sampling times
% and simulation time.
%
% You can also specify that the sample time of the S-function
% is inherited from the driving block. For functions which
% change during minor steps, this is done by
% specifying SYS(7) = 1 and TS = [-1 0]. For functions which
% are held during minor steps, this is done by specifying
% SYS(7) = 1 and TS = [-1 1].
% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.18 $
%
% The following outlines the general structure of an S-function.
%
switch flag,
%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts,RBF1s]=mdlInitializeSizes(PasoGrado,numRBFs,limitinf,limitsup,sigma,RBF1s);
%%%%%%%%%%%%%%%
% Derivatives %
%%%%%%%%%%%%%%%
case 1,
sys=mdlDerivatives(t,x,u);
%%%%%%%%%%
% Update %
%%%%%%%%%%
case 2,
sys=mdlUpdate(t,x,u);
%%%%%%%%%%%
% Outputs %
%%%%%%%%%%%
case 3,
[sys]=mdlOutputs(t,x,u,PasoGrado,numRBFs,limitinf,limitsup,numfig,ver,RBF1s);
%%%%%%%%%%%%%%%%%%%%%%%
% GetTimeOfNextVarHit %
%%%%%%%%%%%%%%%%%%%%%%%
case 4,
sys=mdlGetTimeOfNextVarHit(t,x,u);
%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case 9,
sys=mdlTerminate(t,x,u);
%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
% end sfuntmpl
%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,RBF1s]=mdlInitializeSizes(PasoGrado,numRBFs,limitinf,limitsup,sigma,RBF1s)
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = numRBFs;
sizes.NumInputs = -1;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed
sys = simsizes(sizes);
valores=limitinf:PasoGrado:limitsup;
%center displacement
%a=-0.2*numRBFs/length(valores);
%b=0.2*numRBFs/length(valores);
%for i=1:numRBFs,
%error(i) = a + (b-a) * rand(1);
% error(i)=1+40*randn(1);
%end
A=fRBF(valores,numRBFs,sigma,zeros(1,numRBFs));%c code
%A=fRBF(valores,numRBFs,sigma,error);%c code
RBF1s=A';
%
% initialize the initial conditions
%
x0 = [];
%
% str is always an empty matrix
%
str = [];
%
% initialize the array of sample times
%
ts = [-1 0];
% end mdlInitializeSizes
%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u)
sys = [];
% end mdlDerivatives
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)
sys = [];
% end mdlUpdate
%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function [sys]=mdlOutputs(t,x,u,PasoGrado,numRBFs,limitinf,limitsup,numfig,ver,RBF1s)
%Fast RBFs implemented in C
%valores=limitinf:PasoGrado:limitsup;
entrada= u(1);
Ibase=0.1; %Ibase for french codification 0.1*2.17;0.1 in regular codification;
len=length(RBF1s(1,:))-1;
indice=((entrada-limitinf)/(limitsup-limitinf))*len + 1;
sys=RBF1s(:,round(indice))+Ibase;
if ver==1
x=limitinf:PasoGrado:limitsup;
subplot(7,2,numfig)
plot(x,RBF1s(1:numRBFs,:),'b')
title('Posición Articular')
hold on
plot(entrada,RBF1s(:,round(indice))+Ibase,'rx')
hold off
end
% end mdlOutputs
%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the result is
% absolute time. Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
function sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;
% end mdlGetTimeOfNextVarHit
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)
sys = [];
% end mdlTerminate