MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150239
This study investigates the cellular mechanisms of grid field generation in Medial Entorhinal Cortex (MEC) layer II stellate cells.
Reference:
1 . Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16:325-31 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s): Entorhinal cortex stellate cell;
Channel(s): I Na,t; I A; I K; I CNG;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Synaptic Integration; Attractor Neural Network; Place cell/field; Spatial Navigation; Grid cell;
Implementer(s): Schmidt-Hieber, Christoph [c.schmidt-hieber at ucl.ac.uk];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Gaba; I Na,t; I A; I K; I CNG;
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
: Code taken from:
: Y. Katz et al., Synapse distribution suggests a two-stage model 
: of dendritic integration in CA1 pyramidal neurons.
: Neuron 63, 171 (2009)
: http://groups.nbp.northwestern.edu/spruston/sk_models/2stageintegration/2stageintegration_code.zip
: ModelDB #127351

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (mol) = (1)

}

NEURON {
        SUFFIX kdr
        USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar,ik
        RANGE ninf,taun
        GLOBAL nscale
}

PARAMETER {
        dt                      (ms)
        v                       (mV)
        ek                      (mV)    : must be explicitely def. in hoc
        celsius                 (degC)

        temp    = 24            (degC)

        gkdrbar = 0.003         (mho/cm2)

        vhalfn  = 13            (mV)
        a0n     = 0.02          (/ms)
        zetan   = -3            (1)
        gmn     = 0.7           (1)

        nmin    = 1             (ms)
        q10     = 1
        nscale  = 1
}

STATE {
        n
}

ASSIGNED {
        ik                      (mA/cm2)
        ninf
        gkdr                    (mho/cm2)
        taun                    (ms)
}

INITIAL {
        rates(v)
        n=ninf
        gkdr = gkdrbar*n
        ik = gkdr*(v-ek)
}        

BREAKPOINT {
        SOLVE states METHOD cnexp
        gkdr = gkdrbar*n
        ik = gkdr*(v-ek)
}

DERIVATIVE states {
        rates(v)
        n' = (ninf-n)/taun
}

FUNCTION alpn(v(mV)) {
        alpn = exp(zetan*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

FUNCTION betn(v(mV)) {
        betn = exp(zetan*gmn*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-temp)/10(degC))
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
        if (taun<nmin) {taun=nmin}
        taun=taun/nscale
}















Loading data, please wait...