MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150239
This study investigates the cellular mechanisms of grid field generation in Medial Entorhinal Cortex (MEC) layer II stellate cells.
Reference:
1 . Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16:325-31 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s): Entorhinal cortex stellate cell;
Channel(s): I Na,t; I A; I K; I CNG;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Synaptic Integration; Attractor Neural Network; Place cell/field; Spatial Navigation; Grid cell;
Implementer(s): Schmidt-Hieber, Christoph [c.schmidt-hieber at ucl.ac.uk];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Gaba; I Na,t; I A; I K; I CNG;
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997
: Code taken from:
: Y. Katz et al., Synapse distribution suggests a two-stage model 
: of dendritic integration in CA1 pyramidal neurons.
: Neuron 63, 171 (2009)
: http://groups.nbp.northwestern.edu/spruston/sk_models/2stageintegration/2stageintegration_code.zip
: ModelDB #127351

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar, ina, thegna
	RANGE  minf, hinf, mtau, htau
        GLOBAL thinf, qinf, mscale, hscale
}

PARAMETER {
	gbar = 0.0   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	(ms)
	hmin=0.5	(ms)		
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

	ena = 55	(mV)            : must be explicitly def. in hoc

	v 		(mV)
	dt		(ms)
	celsius=24	(degC)
        mscale = 1
        hscale = 1
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 
INITIAL {
        trates(v)
        m=minf
        h=hinf
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

LOCAL mexp, hexp, sexp

DERIVATIVE states {
         trates(v)      
         m' = (minf - m)/mtau
         h' = (hinf - h)/htau
}

:PROCEDURE states() {   
:        trates(v)      
:        m = m + mexp*(minf-m)
:        h = h + hexp*(hinf-h)
:        VERBATIM
:        return 0;
:        ENDVERBATIM
:}

PROCEDURE trates(vm(mV)) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10(degC))
	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1(ms)/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
        mtau = mtau/mscale
	minf = a/(a+b)
        mexp = 1 - exp(-dt/mtau)

	a = trap0(vm,thi1,Rd,qd)
	b = trap0(-vm,-thi2,Rg,qg)
	htau =  1(ms)/(a+b)/qt
        if (htau<hmin) {htau=hmin}
        htau = htau/hscale
	hinf = 1/(1+exp((vm-thinf)/qinf))
        hexp = 1 - exp(-dt/htau)
}

FUNCTION trap0(v(mV),th(mV),a(/ms),q(mV)) {
	if (fabs((v-th)*1(/mV)) > 1e-6) {
	        trap0 = 1(ms/mV)*a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = 1(ms/mV)*a * q
 	}
}	

        


Loading data, please wait...