A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150240
“… Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. … The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. …”
Reference:
1 . Behuret S, Deleuze C, Gomez L, Fregnac Y and Bal T (2013) Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway PLoS Computational Biology 9(12):e1003401
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex; Thalamus; Retina;
Cell Type(s): Thalamus geniculate nucleus/lateral principal neuron; Thalamus reticular nucleus cell; Neocortex U1 L5B pyramidal pyramidal tract cell; Retina ganglion cell; Thalamus lateral geniculate nucleus interneuron;
Channel(s): I Na,t; I T low threshold; I K; I M;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Convergence;
Implementer(s): Behuret, Sebastien [behuret at unic.cnrs-gif.fr];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal neuron; Thalamus reticular nucleus cell; Retina ganglion cell; Neocortex U1 L5B pyramidal pyramidal tract cell; GabaA; AMPA; I Na,t; I T low threshold; I K; I M;
/
TCconvergenceModel
README.html
cadecay.mod *
ConductancePattern.mod
ConstantCurrent.mod
hh2.mod *
IM.mod
IT.mod
ITGHK.mod
RandomGenerator.mod
RetinalInput.mod
SineWaveCurrent.mod
SynapticNoise.mod
Demo.hoc
DEMO.png
Geometry.hoc
GUI.hoc
mosinit.hoc
Recording.hoc
Run.hoc
screenshot.png
Simulation.hoc
Templates.hoc
                            
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub
	RANGE m_inf, h_inf, n_inf
	RANGE tau_m, tau_h, tau_n
	RANGE m_exp, h_exp, n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .003 	(mho/cm2)
	gkbar	= .005 	(mho/cm2)

	ena	= 50	(mV)
	ek	= -90	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
	vtraub	= -63	(mV)
}

STATE {
	m h n
}

ASSIGNED {
	ina	(mA/cm2)
	ik	(mA/cm2)
	il	(mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ina = gnabar * m*m*m*h * (v - ena)
	ik  = gkbar * n*n*n*n * (v - ek)
}


:DERIVATIVE states {   : exact Hodgkin-Huxley equations
:	evaluate_fct(v)
:	m' = (m_inf - m) / tau_m
:	h' = (h_inf - h) / tau_h
:	n' = (n_inf - n) / tau_n
:}

PROCEDURE states() {	: exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
	n = n + n_exp * (n_inf - n)
	VERBATIM
	return 0;
	ENDVERBATIM
}

UNITSOFF
INITIAL {
	m = 0
	h = 0
	n = 0
:
:  Q10 was assumed to be 3 for both currents
:
: original measurements at roomtemperature?

	tadj = 3.0 ^ ((celsius-36)/ 10 )
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

	a = 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
	b = 0.5 * exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
	n_exp = 1 - exp(-dt/tau_n)
}

UNITSON

Loading data, please wait...