Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150284
"… We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. …"
Reference:
1 . Mattioni M, Le Novere N (2013) Integration of Biochemical and Electrical Signaling-Multiscale Model of the Medium Spiny Neuron of the Striatum. PLoS One 8:e66811 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum spiny direct pathway neuron;
Channel(s): I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
Gap Junctions:
Receptor(s):
Gene(s): Kv4.2 KCND2; Kv1.2 KCNA2; Cav1.3 CACNA1D; Cav1.2 CACNA1C; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Synaptic Plasticity; Signaling pathways; Calcium dynamics;
Implementer(s): Mattioni, Michele [mattioni at ebi.ac.uk];
Search NeuronDB for information about:  Neostriatum spiny direct pathway neuron; I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
Note from the ModelDB Administrator
===================================
This is a July 15th, 2013 copy of the repository at:
https://github.com/mattions/TimeScales
where you can find the most recent copy.

************************
The TimeScales framework
************************

This is the README of the TimeScales framework, which is used to 
run a Multiscale Model of the Medium Spiny Neuron of the Neostriatum, 
integrating electrical signalling with biochemical pathways.

The main script to launch the simulation is spinesIntegration.py, which 
accepts a certain amount of parameters (described in the source code).

The code is licensed under BSD.

********
Citation
********

::

    Mattioni M, Le Novère N (2013) Integration of Biochemical and Electrical 
    Signaling-Multiscale Model of the Medium Spiny Neuron of the Striatum. 
    PLoS ONE 8(7): e66811. doi:10.1371/journal.pone.0066811
    
The paper is online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066811
    

*****************
Package structure
*****************

These are the directories of the package:

- *biochemical_circuits* contains all the biochemical network which have been used at different stage 
  of the development of the model.
- *branch_dist* contains the code to calculate the spine distribution as explained in the paper 
  and in the thesis
- *ecellControl* is the module with the ecellManager class, which controls the E-Cell simulator 
  and it's used ae entry-point in the main synchronization script (`spineIntegration.py`)
- *helpers* is a directory where there are some utilities script used to plot and explore the data
- *hoc* contains the hoc file to instantiate the MSN without any spines based on the model of 
- *mod* contains the NMODL file which needs to be compiled and than can be loaded into section in the 
  Neuron model. 
- *neuroControl* is the module with the NeuronManager class, which is used to control NEURON. In this module
  there are also the class to create the hybrid spine, which has both electrical and biochemical nature.
- *param* contains the parameters file used to run the simulations.
- *spineIntegration.py* is the main script which runs the multiscale model.
- *extref.py* contains the class to extend Neuronvisio storage format to accept the biochemical results 
  on top of the electrical one. 
- *visioStart.py* instantiate the model and loads it in the Neuronvisio software.

****************************************
How to launch simulation on the EBI cluster
****************************************

==========
TimeScales
==========

Launching the simulations
=========================

This is the README to launch TimeScales with the Hybrid model on the EBI cluster


Storing here for future references::

    bsub -M 20000 -R "rusage[mem=20000]" smt run param/allspines.param -r "Testing the new synchro mechanism." -t "test, all"


Small memory, for testing
-------------------------

    bsub -M 4000 -R "rusage[mem=4000]" smt run param/default.param -r "Testing the new synchro mechanism." -t "test, twospines"
    
    bsub -M 4000 -R "rusage[mem=4000]" -q research-rh6 smt run param/short_tstop_double_stim.param -r "Double stims applied for short tstop." -t "test, twospines"
    
    bsub -M 10000 -R "rusage[mem=10000]" -q research-rh6 smt run param/short_tstop_onebranch_several_stimulation.param -r "Short tstop for testing. One branch populated with spines. Using 10 Gb" -t "onebranch"


K flux investigation
--------------------

    bsub -M 4000 -R "rusage[mem=4000]" smt run param/short_tstop_k_flux_investigation.param -r "Testing different calcium sampling" -t "k_flux"

Long tStop test
---------------

    bsub -M 4000 -R "rusage[mem=4000]" -q research-rh6 smt run param/long_tstop.param -r "Running a long simulation." -t "test, twospines"

    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_double_stim_two_spines.param -r "Running a double excitation with two spines." -t "twospines"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_double_stim_all_spines.param -r "Running a double excitation with two spines." -t "all"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_one_pulse.param -r "Running one pulse event in one spine." -t "twospines"

One branch stim
---------------

    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_several_stimulation.param -r "Several stims across one branch populated with spines. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_1Hz.param -r "One branch: One spine double stim. 1Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_4Hz.param -r "One branch: One spine double stim. 4Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_8Hz.param -r "One branch: One spine double stim. 8Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_20Hz.param -r "One branch: One spine double stim. 20Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_50Hz.param -r "One branch: One spine double stim. 50Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_1_spine_100Hz.param -r "One branch: One spine double stim. 100Hz. Using 10 Gb" -t "onebranch"

    
All Branches - Double stim one spine    
------------------------------------

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_1Hz.param -r "All spines: One spine double stim. 1Hz. Using 10 Gb" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_4Hz.param -r "All spines: One spine double stim. 4Hz. Using 10 Gb" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_8Hz.param -r "All spines: One spine double stim. 8Hz. Using 10 Gb" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_20Hz.param -r "All spines: One spine double stim. 20Hz. Using 10 Gb" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_50Hz.param -r "All spines: One spine double stim. 50Hz. Using 10 Gb" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allspines_1_spine_100Hz.param -r "All spines: One spine double stim. 100Hz. Using 10 Gb" -t "all"

All branches - CPM
------------------

    bsub -M 10000 -R "rusage[mem=6000]" -q research-rh6 smt run param/long_tstop_onebranch_clustered_plasticity_model.param -r "One branch: Clustered Plasticity Model. 9 spines stimulated. 20 Hz. Using 10 Gb" -t "onebranch"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_8_Hz.param -r "CPM 2 branches, all spine 8 Hz. Using 60 Gb of RAM" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_20_Hz.param -r "CPM 2 branches, all spine 20 Hz. Using 60 Gb of RAM (5seg med)" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_40_Hz.param -r "CPM 2 branches, all spine 40 Hz. Using 60 Gb of RAM (5seg med)" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_50_Hz.param -r "CPM 2 branches, all spine 50 Hz. Using 60 Gb of RAM (5seg med)" -t "all"
    
    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_40_Hz_long_train.param -r "CPM 2 branches, all spine 40 Hz long stimulation. Using 60 Gb of RAM (5seg med)" -t "all"   


Kir_investigation
-----------------

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_20_Hz.param -r "Kir Investigation kir_gkbar=0.00014" -t "all" kir_gkbar=0.00014

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_20_Hz.param -r "Kir Investigation kir_gkbar=0.00018" -t "all" kir_gkbar=0.00018

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_20_Hz.param -r "Kir Investigation kir_gkbar=0.00012" -t "all" kir_gkbar=0.00012

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/long_tstop_allbranch_cpm_two_branches_stims_20_Hz.param -r "Kir Investigation kir_gkbar=0.00020" -t "all" kir_gkbar=0.00020

Neighbours psine investigation
------------------------------

    bsub -M 60000 -R "rusage[mem=20000]" -q research-rh6 smt run param/neighbouring_spine_20Hz.param -r "Neighboring spine with bio on" -t "all, neighbouring"

Reading simulations' results
============================

Reload the storage.h5 file with neuronvisio

    run nrnvisio path/to/Sim/storage.h5
 
 
============
EcellManager
============

Used to launch the biochemical alone for testing.

Launching the simulations
========================

This is for the weight checking::

    bsub -M 4000 -R "rusage[mem=4000]" smt run -m ecellControl/ecellManager.py ecellControl/ecellControl.param -r "Testing AMPA weight"

Reading simulations' results
============================

Open an ipython and run

    run helpers/plotter path/to/TimeCourses


Mattioni M, Le Novere N (2013) Integration of Biochemical and Electrical Signaling-Multiscale Model of the Medium Spiny Neuron of the Striatum. PLoS One 8:e66811[PubMed]

References and models cited by this paper

References and models that cite this paper

Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812-5 [PubMed]

Araya R, Eisenthal KB, Yuste R (2006) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103:18799-804 [PubMed]

Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103:17961-6 [PubMed]

Araya R, Nikolenko V, Eisenthal KB, Yuste R (2007) Sodium channels amplify spine potentials. Proc Natl Acad Sci U S A 104:12347-52 [PubMed]

Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131-43 [PubMed]

Arendt KL, Royo M, Fernandez-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA (2010) PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13:36-44

Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222-6 [PubMed]

Bhalla US (2011) Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and dendritic excitability. Neural Netw [Journal] [PubMed]

   Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011) [Model]

Bloodgood BL, Giessel AJ, Sabatini BL (2009) Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol 7:e1000190-3 [PubMed]

Bloodgood BL, Sabatini BL (2007) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 17:345-51

Bower JM, Beeman D (1998) The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System

Brunel N, van Rossum MC (2007) Lapicque's 1907 paper: from frogs to integrate-and-fire. Biol Cybern 97:337-9 [PubMed]

Burger SK, Thompson DC, Ayers PW (2011) Quantum mechanics-molecular mechanics strategies for docking pose refinement: distinguishing between binders and decoys in cytochrome C peroxidase. J Chem Inf Model 51:93-101 [PubMed]

Cao Y, Wang P, Jin X, Wang J, Yang Y (2012) Tunnel structure analysis using the multi-scale modeling method Tunnelling And Underground Space Technology 28:124-134

Carnevale NT, Hines ML (2006) The NEURON Book

Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483-93 [PubMed]

Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521-55 [PubMed]

Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms Neuropsychopharmacology 33:18-41

Cvijovic M, Soueidan H, Sherman DJ, Klipp E, Nikolski M (2008) Exploratory simulation of cell ageing using hierarchical models. Genome Inform 21:114-25 [PubMed]

Davison A (2012) Automated capture of experiment context for easier reproducibility in computational research Computing In Science And Engineering 14:48-56

Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, M (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251-9 [PubMed]

Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603-14 [Journal] [PubMed]

Desdouits F, Cheetham JJ, Huang HB, Kwon YG, da Cruz e Silva EF, Denefle P, Ehrlich ME, Nairn (1995) Mechanism of inhibition of protein phosphatase 1 by DARPP-32: studies with recombinant DARPP-32 and synthetic peptides. Biochem Biophys Res Commun 206:652-8 [PubMed]

Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538-52 [PubMed]

Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kota (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8:43-60 [PubMed]

Ekeberg O, Djurfeldt M (2008) MUSIC multisimulation coordinator: Request for comments Nat Preced.

Fernandez E, Schiappa R, Girault JA, Le Novère N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176-60 [PubMed]

Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533-6 [PubMed]

Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barre (2004) Open MPI: goals, concept, and design of a next generation MPI implementation Proceedings, 11th European PVM-MPI Users' Group Meeting, Kranzlmuller D:Kacsuk P:Dongara J, ed. pp.97

Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088-100 [PubMed]

Gewaltig M-O, Diesmann M (2007) NEST (Neural Simulation Tool) Scholarpedia 2:1430

Goto S, Matsukado Y, Mihara Y, Inoue N, Miyamoto E (1986) The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay. Brain Res 397:161-72 [PubMed]

Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132-46 [PubMed]

Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575-83 [PubMed]

Gropp W (2002) MPICH2: a new start for MPI implementations Proceedings of the 9th European PVM-MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, Kranzlmuller D:Kacsuk P:Dongara J:Volkert J, ed. pp.7

Gruber AJ, O'Donnell P (2009) Bursting activation of prefrontal cortex drives sustained up states in nucleus accumbens spiny neurons in vivo. Synapse 63:173-80 [PubMed]

Grunditz A, Holbro N, Tian L, Zuo Y, Oertner TG (2008) Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization J Neurosci 28(50):13457-13466 [Journal] [PubMed]

   Spine neck plasticity controls postsynaptic calcium signals (Grunditz et al. 2008) [Model]

Harvey CD, Yasuda R, Zhong H, Svoboda K (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321:136-40 [PubMed]

Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 1:137-54 [PubMed]

Hemmings HC, Nairn AC, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem 259:14491-7

Hines ML, Davison AP, Muller E (2009) NEURON and Python Frontiers in Neuroinformatics 3:1 [Journal] [PubMed]

   NEURON + Python (Hines et al. 2009) [Model]

Holbro N, Grunditz A, Wiegert JS, Oertner TG (2010) AMPA receptors gate spine Ca(2+) transients and spike-timing-dependent potentiation. Proc Natl Acad Sci U S A 107:15975-80 [PubMed]

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI--a COmplex PAthway SImulator. Bioinformatics 22:3067-74 [PubMed]

Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur J Biochem 132:297-307 [PubMed]

Ingram G, Cameron I, Hangos K (2004) Classification and analysis of integrating frameworks in multiscale modelling Chemical Engineering Science 59:2171-2187

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569-72 [Journal] [PubMed]

   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]

Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A 105:3593-8 [PubMed]

Jackson MB, Redman SJ (2003) Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J Neurosci 23:1612-21 [PubMed]

Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85-100 [PubMed]

Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389-401 [PubMed]

Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340-50 [PubMed]

King MM, Huang CY, Chock PB, Nairn AC, Hemmings HC, Chan KF, Greengard P (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259:8080-3 [PubMed]

Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11:239-51 [PubMed]

Le Novere N (2006) Model storage, exchange and integration. BMC Neurosci 7 Suppl 1:S11 [PubMed]

Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, (2009) The Systems Biology Graphical Notation. Nat Biotechnol 27:735-41 [PubMed]

Lee SJ, Yasuda R (2009) Spatiotemporal Regulation of Signaling in and out of Dendritic Spines: CaMKII and Ras. Open Neurosci J 3:117-127 [PubMed]

Li L, Stefan MI, Le Novère N (2012) Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS One 7:e43810-41 [PubMed]

Lisman JE, Raghavachari S, Tsien RW (2007) The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8:597-609 [PubMed]

Lu Li (2010) Modelling Dopamine and Glutamate Signal Integration Inuence on Neuronadaptation Ph.D. thesis, University of Cambridge

Lucic V, Greif GJ, Kennedy MB (2008) Detailed state model of CaMKII activation and autophosphorylation. Eur Biophys J 38:83-98 [PubMed]

Machne R, Finney A, Muller S, Lu J, Widder S, Flamm C (2006) The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22:1406-7 [PubMed]

Majda AJ (2000) Real world turbulence and modern applied mathematics Mathematics: Frontiers and Perspectives. American Mathematical Society

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5-21 [PubMed]

Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103-26 [PubMed]

Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-60 [Journal] [PubMed]

   [241 reconstructed morphologies on NeuroMorpho.Org]

Markram H, Roth A, Helmchen F (1998) Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci 5:331-48 [Journal] [PubMed]

Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761-6 [PubMed]

Mattioni M, Cohen U, Le Novere N (2012) Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON. Front Neuroinform 6:20 [Journal] [PubMed]

   Neuronvisio: a gui with 3D capabilities for NEURON (Mattioni et al. 2012) [Model]

Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256:1199-202 [PubMed]

Moyer JT, Wolf JA, Finkel LH (2007) Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98:3731-48 [PubMed]

Olivier BG, Rohwer JM, Hofmeyr JH (2005) Modelling cellular systems with PySCeS. Bioinformatics 21:560-1 [PubMed]

Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897-903 [Journal] [PubMed]

   Membrane potential changes in dendritic spines during APs and synaptic input (Palmer & Stuart 2009) [Model]

Perrino BA, Wilson AJ, Ellison P, Clapp LH (2002) Substrate selectivity and sensitivity to inhibition by FK506 and cyclosporin A of calcineurin heterodimers composed of the alpha or beta catalytic subunit. Eur J Biochem 269:3540-8 [PubMed]

Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+-calmodulin-dependent protein kinase II at the PSD. J Neurosci 23:11270-8 [PubMed]

Pitt-francis J, Et_al (2009) Chaste: a test-driven approach to software development for biological modelling Comput Phys Commun 180:2452-2471

Pjesivac-Grbovic J, Angskun T, Bosilca G, Fagg GE, Gabriel E, Dongarra JJ (2007) Performance analysis of MPI collective operations Cluster Computing 10:127-143

Quintana AR, Wang D, Forbes JE, Waxham MN (2005) Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 334:674-80 [PubMed]

Ray S, Bhalla US (2008) PyMOOSE: Interoperable Scripting in Python for MOOSE. Front Neuroinformatics 2(6):1-16 [Journal] [PubMed]

   Moose/PyMOOSE: interoperable scripting in Python for MOOSE (Ray and Bhalla 2008) [Model]

Schulz M, Uhlendorf J, Klipp E, Liebermeister W (2006) SBMLmerge, a system for combining biochemical network models. Genome Inform 17:62-71 [PubMed]

Segev I, Burke RE (1998) Compartmental models of complex neurons Methods In Neuronal Modeling, Koch C:Segev I, ed. pp.93

Shen H, Sesack SR, Toda S, Kalivas PW (2008) Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 213:149-57 [PubMed]

Stefan MI, Edelstein SJ, Le Novère N (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci U S A 105:10768-73 [PubMed]

Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and d2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228-235

Surmeier DJ, Shen W, Day M, Gertler T, Chan S, Tian X, Plotkin JL (2010) The role of dopamine in modulating the structure and function of striatal circuits. Prog Brain Res 183:149-67 [PubMed]

Takahashi K, Kaizu K, Hu B, Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20:538-46 [PubMed]

Tolle DP, Le Novère N (2010) Brownian diffusion of AMPA receptors is sufficient to explain fast onset of LTP. BMC Syst Biol 4:25-800 [PubMed]

Tzortzopoulos A, Best SL, Kalamida D, Török K (2004) Ca2+-calmodulin-dependent activation and inactivation mechanisms of alphaCaMKII and phospho-Thr286-alphaCaMKII. Biochemistry 43:6270-80 [PubMed]

Vayttaden SJ, Bhalla US (2004) Developing complex signaling models using GENESIS/Kinetikit. Sci STKE 2004:pl4

Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA (2010) Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input. Neuron 67:435-451 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010) [Model]

Weinan E, Engquist B (2003) Multiscale modeling and computation Notices Of American Mathematical Society 50:1062

Wils S, De_schutter E (2009) STEPS: modeling and simulating complex reaction-diffusion systems with Python Front Neuroinform 3:15

Wilson JC (1992) Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons Single neuron computation :141-171

Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH (2005) NMDA-AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080-95 [Journal] [PubMed]

   Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005) [Model]

Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283-91 [PubMed]

Zhabotinsky AM (2000) Bistability in the Ca(2+)-calmodulin-dependent protein kinase-phosphatase system. Biophys J 79:2211-21 [PubMed]

McDougal RA, Bulanova AS, Lytton WW (2016) Reproducibility in computational neuroscience models and simulations Transactions on Biomedical Engineering, online before print [Journal]

(96 refs)