L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150538
This model examined how distal oscillatory inhibition influences the firing of a biophysically-detailed layer 5 pyramidal neuron model.
Reference:
1 . Li X, Morita K, Robinson HP, Small M (2013) Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 109:2739-56 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I K,Ca; I Na, leak;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Dopamine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Intrinsic plasticity;
Implementer(s): Moradi, Keivan [k.moradi at gmail.com]; Robinson, H.P.C. [hpcr at cam.ac.uk]; Small, Michael ; Li, Xiumin ;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; AMPA; I K,Ca; I Na, leak; Dopamine;
/
XiEtal2013
Codes for periodic inhibition
ReadMe.txt
cad2.mod
GABABsyn.mod
h.mod
kca.mod *
km.mod *
kv.mod *
na.mod *
NMDAr.mod
SlowCa.mod *
basal_soma_periodicgaba_stimulus.hoc
basal_soma_Poissongaba_stimulus.hoc
distal_distributed_periodic_gaba_stimulus.hoc
distal_distributed_periodic_gaba+gabab_stimulus.hoc
distal_distributed_Poisson_gaba_stimulus.hoc
distal_distributed_Poisson_GABAb_stimulus.hoc
j4a.hoc *
mainfile_stim_cyc.hoc
mosinit.hoc
                            
TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
: adopted from the lower model by AS 102199
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:
: 20150525 NTC
: Fixed ca initialization by inserting cai = ca into INITIAL block.
: Changed integration method from euler to derivimplicit
: which is appropriate for simple ion accumulation mechanisms.
: See
: Integration methods for SOLVE statements
: http://www.neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592

NEURON {
	SUFFIX cad2
	USEION ca READ ica, cai WRITE cai
	RANGE ca
	GLOBAL depth,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)
}


PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 80	(ms)		: rate of calcium removal, changed from 200 to 80 (H.Markram)
	cainf	= 100e-6(mM)
	cai		(mM)
}

STATE {
	ca		(mM) 
}

INITIAL {
	ca = cainf
  cai = ca
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
}
	
BREAKPOINT {
        SOLVE state METHOD derivimplicit : not euler
    : see http://www.neuron.yale.edu/phpBB/viewtopic.php?f=28&t=592
}

DERIVATIVE state { 
	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca
}


Loading data, please wait...