Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150556
A biophysical single compartment model of the dorsal lateral striatum medium spiny neuron is presented here. The model is an implementation then adaptation of a previously described model (Mahon et al. 2002). The model has been adapted to include NMDA and AMPA receptor models that have been fit to dorsal lateral striatal neurons. The receptor models allow for excitation by other neuron models.
Reference:
1 . Biddell K, Johnson J (2013) A Biophysical Model of Cortical Glutamate Excitation of Medium Spiny Neurons in the Dorsal Lateral Striatum 56th IEEE Midwest Symposium on Circuits and Systems
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Connectionist Network;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum spiny neuron;
Channel(s): I Na,p; I K; I K,leak; I A, slow; I_Ks; I Krp; I Na, leak;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Short-term Synaptic Plasticity; Parkinson's; Learning; Deep brain stimulation; Olfaction;
Implementer(s): Biddell, Kevin [kevin.biddell at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; AMPA; NMDA; I Na,p; I K; I K,leak; I A, slow; I_Ks; I Krp; I Na, leak; Glutamate;
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[3]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}
{
xpanel("RunControl", 0)
v_init = -79
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 150
xvalue("t","t", 2 )
tstop = 150
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 0.13
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(0,132)
}
{
save_window_ = new Graph(0)
save_window_.size(0,150,-80,40)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 150, 120, 576, 7, 374.4, 250.3)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("IClamp[0] at str_soma(0.5)", 0)
xlabel("IClamp[0] at str_soma(0.5)")
stim1.del = 0
xvalue("del","stim1.del", 1,"", 0, 1 )
stim1.dur = 0
xvalue("dur","stim1.dur", 1,"", 0, 1 )
stim1.amp = 0
xvalue("amp","stim1.amp", 1,"", 0, 1 )
stim1.i = 0
xvalue("i","stim1.i", 0,"", 0, 1 )
xpanel(6,606)
}
{
xpanel("AMPAk[0] at str_soma(0.5)", 0)
xlabel("AMPAk[0] at str_soma(0.5)")
strAMPAk.Erev = 0
xvalue("Erev","strAMPAk.Erev", 1,"", 0, 1 )
strAMPAk.gAmax = 30
xvalue("gAmax","strAMPAk.gAmax", 1,"", 0, 1 )
strAMPAk.tauon = 1.1
xvalue("tauon","strAMPAk.tauon", 1,"", 0, 1 )
strAMPAk.tauoff = 5.75
xvalue("tauoff","strAMPAk.tauoff", 1,"", 0, 1 )
strAMPAk.i = -0.000760508
xvalue("i","strAMPAk.i", 0,"", 0, 1 )
strAMPAk.gA = 1.30264e-05
xvalue("gA","strAMPAk.gA", 0,"", 0, 1 )
strAMPAk.m = 0.00252074
xvalue("m","strAMPAk.m", 0,"", 0, 1 )
strAMPAk.h = 0.434898
xvalue("h","strAMPAk.h", 0,"", 0, 1 )
xpanel(576,495)
}
{
xpanel("NMDAk[0] at str_soma(0.5)", 0)
xlabel("NMDAk[0] at str_soma(0.5)")
strNMDAk.Erev = 0
xvalue("Erev","strNMDAk.Erev", 1,"", 0, 1 )
strNMDAk.gNmax = 60
xvalue("gNmax","strNMDAk.gNmax", 1,"", 0, 1 )
strNMDAk.tauon = 2.23
xvalue("tauon","strNMDAk.tauon", 1,"", 0, 1 )
strNMDAk.tauoff = 75.68
xvalue("tauoff","strNMDAk.tauoff", 1,"", 0, 1 )
strNMDAk.mg = 1.2
xvalue("mg","strNMDAk.mg", 1,"", 0, 1 )
strNMDAk.i = -0.00153548
xvalue("i","strNMDAk.i", 0,"", 0, 1 )
strNMDAk.gN = 0.000356267
xvalue("gN","strNMDAk.gN", 0,"", 0, 1 )
strNMDAk.m = 0.0397462
xvalue("m","strNMDAk.m", 0,"", 0, 1 )
strNMDAk.h = 5.97601
xvalue("h","strNMDAk.h", 0,"", 0, 1 )
strNMDAk.B = 0.0738226
xvalue("B","strNMDAk.B", 0,"", 0, 1 )
xpanel(847,421)
}
{
xpanel("KBNetStim[0] at str_soma(0.5)", 0)
xlabel("KBNetStim[0] at str_soma(0.5)")
stim2.interval = 1
xvalue("interval","stim2.interval", 1,"", 0, 1 )
stim2.number = 11
xvalue("number","stim2.number", 1,"", 0, 1 )
stim2.start = 10
xvalue("start","stim2.start", 1,"", 0, 1 )
stim2.noise = 0.5
xvalue("noise","stim2.noise", 1,"", 0, 1 )
xpanel(306,108)
}
{
xpanel("KBNetStim[1] at str_soma(0.5)", 0)
xlabel("KBNetStim[1] at str_soma(0.5)")
upbkgrnd.interval = 3.33
xvalue("interval","upbkgrnd.interval", 1,"", 0, 1 )
upbkgrnd.number = 4
xvalue("number","upbkgrnd.number", 1,"", 0, 1 )
upbkgrnd.start = 25
xvalue("start","upbkgrnd.start", 1,"", 0, 1 )
upbkgrnd.noise = 0.5
xvalue("noise","upbkgrnd.noise", 1,"", 0, 1 )
xpanel(306,360)
}
{
xpanel("KBNetStim[2] at str_soma(0.5)", 0)
xlabel("KBNetStim[2] at str_soma(0.5)")
dwnbkgrnd.interval = 25
xvalue("interval","dwnbkgrnd.interval", 1,"", 0, 1 )
dwnbkgrnd.number = 40
xvalue("number","dwnbkgrnd.number", 1,"", 0, 1 )
dwnbkgrnd.start = 1
xvalue("start","dwnbkgrnd.start", 1,"", 0, 1 )
dwnbkgrnd.noise = 0.5
xvalue("noise","dwnbkgrnd.noise", 1,"", 0, 1 )
xpanel(306,618)
}
{
xpanel("str_soma(0 - 1) (Parameters)", 0)
xlabel("str_soma(0 - 1) (Parameters)")
xlabel("nseg = 3")
str_soma.L = 11
xvalue("L","str_soma.L", 1,"", 0, 0 )
str_soma.Ra = 35.4
xvalue("Ra","str_soma.Ra", 1,"str_soma.Ra += 0", 0, 1 )
str_soma.cm = 1
xvalue("cm","str_soma.cm", 1,"", 0, 0 )
str_soma.diam = 18
xvalue("diam","str_soma.diam", 1,"", 0, 0 )
str_soma.gnabar_Nam = 0.035
xvalue("gnabar_Nam","str_soma.gnabar_Nam", 1,"", 0, 0 )
str_soma.gkmbar_Km = 0.006
xvalue("gkmbar_Km","str_soma.gkmbar_Km", 1,"", 0, 0 )
str_soma.gl_Leakm = 1e-05
xvalue("gl_Leakm","str_soma.gl_Leakm", 1,"", 0, 0 )
str_soma.el_Leakm = -75
xvalue("el_Leakm","str_soma.el_Leakm", 1,"", 0, 0 )
str_soma.gkirmbar_Kirm = 0.0002
xvalue("gkirmbar_Kirm","str_soma.gkirmbar_Kirm", 1,"", 0, 0 )
str_soma.gkafmbar_KAfm = 9e-05
xvalue("gkafmbar_KAfm","str_soma.gkafmbar_KAfm", 1,"", 0, 0 )
str_soma.gkasmbar_KAsm = 0.00032
xvalue("gkasmbar_KAsm","str_soma.gkasmbar_KAsm", 1,"", 0, 0 )
str_soma.gkrpmbar_Krpm = 0.00042
xvalue("gkrpmbar_Krpm","str_soma.gkrpmbar_Krpm", 1,"", 0, 0 )
str_soma.gnapmbar_NaPm = 2e-05
xvalue("gnapmbar_NaPm","str_soma.gnapmbar_NaPm", 1,"", 0, 0 )
str_soma.gnasmbar_NaSm = 0.00011
xvalue("gnasmbar_NaSm","str_soma.gnasmbar_NaSm", 1,"", 0, 0 )
xpanel(1118,30)
}
{
xpanel("NMDAk (Globals)", 0)
vmin_NMDAk = -120
xvalue("vmin_NMDAk","vmin_NMDAk", 1,"", 0, 0 )
vmax_NMDAk = 100
xvalue("vmax_NMDAk","vmax_NMDAk", 1,"", 0, 0 )
total_NMDAk = 19.8
xvalue("total_NMDAk","total_NMDAk", 1,"", 0, 0 )
usetable_NMDAk = 1
xvalue("usetable_NMDAk","usetable_NMDAk", 1,"", 0, 0 )
xpanel(1124,591)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...