Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150621
Striatal output neurons (SONs) integrate glutamatergic synaptic inputs originating from the cerebral cortex. In vivo electrophysiological data have shown that a prior depolarization of SONs induced a short-term (1 sec)increase in their membrane excitability, which facilitated the ability of corticostriatal synaptic potentials to induce firing. Here we propose, using a computational model of SONs, that the use-dependent, short-term increase in the responsiveness of SONs mainly results from the slow kinetics of a voltage-dependent, slowly inactivating potassium A-current. This mechanism confers on SONs a form of intrinsic short-term memory that optimizes the synaptic input–output relationship as a function of their past activation.
Reference:
1 . Mahon S, Deniau JM, Charpier S, Delord B (2000) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7:357-62 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway neuron; Abstract Wang-Buzsaki neuron;
Channel(s): I Na,p; I Na,t; I K; I_Ks; I Krp;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Short-term Synaptic Plasticity;
Implementer(s): Biddell, Kevin [kevin.biddell at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway neuron; I Na,p; I Na,t; I K; I_Ks; I Krp;
/
MahonEtAl2000
README.html
KAfm.mod *
KAsm.mod *
Kirm.mod
Km.mod *
Krpm.mod *
Leakm.mod
Nam.mod *
NaPm.mod *
NaSm.mod *
figure2a.ses
figure3a.ses
Figures2B3B.xls
init.hoc
kmb.mahon.1.hoc
mosinit.hoc *
screenshot2A.png
screenshot3Aa.png
screenshot3Ab.png
                            
TITLE Basic Potassium current
 
COMMENT
 from "Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model" (Wang and Buzsaki 1996)
 Used in Role of a Striatal Slowly Inactivating Potassion Current in Short-term Facilitation of Corticostriatal Inputs" A computer Simulation Study" (Mahon et al. 2000)
Implemented by Kevin M. Biddell kevin.biddell@gmail.com
7/12/06

NOTE: 1S=1mho Neuron wants the units in mhos not millisiemens, please note the conversion!

Phi =5 and no q10 or temp adjustment according to Bruno Delord 11/13/06

ENDCOMMENT
 
UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
 	SUFFIX Km
	USEION k WRITE ik
	RANGE gkmbar, gkm, ninf, an, Bn
}
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
  	
	ek	= -90	(mV)
	gkmbar	= 0.006 (mho/cm2) : 6mS
	phi	= 5  < 0, 1e9 > : according to Bruno delord 11/13/06
      Van	= -27 :NOT the original value from wang and Buzsaki
	Kan	= 1
	Vbn	= -37 :NOT the original value from wang and Buzsaki
	Kbn	= 80
}
 
STATE {
        n
}
 
ASSIGNED {
        v  (mV)
	ik (mA/cm2)
	celsius		(degC)
 	ninf
	an
	Bn
        gkm
}
 
BREAKPOINT {
        SOLVE states METHOD cnexp
        gkm = gkmbar*n^4
        ik = gkm*(v - ek)
  
}
 
UNITSOFF
 
INITIAL {
	rates(v)
	n= ninf
}

DERIVATIVE states {  :Computes states variable n 
        rates(v)      :             at the current v and dt.
       
	n'=phi*(an*(1-n)-Bn*n)

}
 
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        
        an = (-0.01*(v-Van)/Kan/(exp(-0.1*(v-Van)/Kan)-1))
        Bn = 0.125*exp(-(v-Vbn)/Kbn)
        ninf = an/(an+Bn)
	      
}
 
UNITSON


Loading data, please wait...