Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150621
Striatal output neurons (SONs) integrate glutamatergic synaptic inputs originating from the cerebral cortex. In vivo electrophysiological data have shown that a prior depolarization of SONs induced a short-term (1 sec)increase in their membrane excitability, which facilitated the ability of corticostriatal synaptic potentials to induce firing. Here we propose, using a computational model of SONs, that the use-dependent, short-term increase in the responsiveness of SONs mainly results from the slow kinetics of a voltage-dependent, slowly inactivating potassium A-current. This mechanism confers on SONs a form of intrinsic short-term memory that optimizes the synaptic input–output relationship as a function of their past activation.
Reference:
1 . Mahon S, Deniau JM, Charpier S, Delord B (2000) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7:357-62 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum spiny direct pathway neuron; Abstract Wang-Buzsaki neuron;
Channel(s): I Na,p; I Na,t; I K; I_Ks; I Krp;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Short-term Synaptic Plasticity;
Implementer(s): Biddell, Kevin [kevin.biddell at gmail.com];
Search NeuronDB for information about:  Neostriatum spiny direct pathway neuron; I Na,p; I Na,t; I K; I_Ks; I Krp;
/
MahonEtAl2000
README.html
KAfm.mod *
KAsm.mod *
Kirm.mod
Km.mod *
Krpm.mod *
Leakm.mod
Nam.mod *
NaPm.mod *
NaSm.mod *
figure2a.ses
figure3a.ses
Figures2B3B.xls
init.hoc
kmb.mahon.1.hoc
mosinit.hoc *
screenshot2A.png
screenshot3Aa.png
screenshot3Ab.png
                            
load_file("nrngui.hoc")
load_file("init.hoc")

Mahon S, Deniau JM, Charpier S, Delord B (2000) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7:357-62[PubMed]

References and models cited by this paper

References and models that cite this paper

Bargas J, Galarraga E, Aceves J (1989) An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp Brain Res 75:146-56 [PubMed]

Chao TI, Alzheimer C (1995) Do neurons from rat neostriatum express both a TTX-sensitive and a TTX-insensitive slow Na+ current? J Neurophysiol 74:934-41 [Journal] [PubMed]

Charpier S, Mahon S, Deniau JM (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91:1209-22 [PubMed]

Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249-63 [Journal] [PubMed]

Gabel LA, Nisenbaum ES (1998) Biophysical characterization and functional consequences of a slowly inactivating potassium current in neostriatal neurons. J Neurophysiol 79:1989-2002 [PubMed]

Graybiel AM (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 5:733-41 [PubMed]

Hammond C, Crepel F (1992) Evidence for a Slowly Inactivating K+ Current in Prefrontal Cortical Cells. Eur J Neurosci 4:1087-1092 [PubMed]

Hoehn K, Watson TW, MacVicar BA (1993) A novel tetrodotoxin-insensitive, slow sodium current in striatal and hippocampal neurons. Neuron 10:543-52 [PubMed]

Jaeger D, Kita H, Wilson CJ (1994) Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J Neurophysiol 72:2555-8 [Journal] [PubMed]

Mahon S, Delord B, Deniau JM, Charpier S (2000) Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J Physiol 527 Pt 2:345-54 [PubMed]

McCormick DA (1991) Functional properties of a slowly inactivating potassium current in guinea pig dorsal lateral geniculate relay neurons. J Neurophysiol 66:1176-89 [Journal] [PubMed]

Nisenbaum ES, Mermelstein PG, Wilson CJ, Surmeier DJ (1998) Selective blockade of a slowly inactivating potassium current in striatal neurons by (+--) 6-chloro-APB hydrobromide (SKF82958). Synapse 29:213-24 [PubMed]

Nisenbaum ES, Wilson CJ (1995) Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15:4449-63 [PubMed]

Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ (1996) Isolation and characterization of a persistent potassium current in neostriatal neurons. J Neurophysiol 76:1180-94 [Journal] [PubMed]

Nisenbaum ES, Xu ZC, Wilson CJ (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol 71:1174-89 [Journal] [PubMed]

Press WH, Flannery BP, Teukolsky SA (1992) Numerical recipes in C: The Art of Scientific Computing, 2nd edn

Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379-81 [PubMed]

Surmeier DJ, Bargas J, Kitai ST (1989) Two types of A-current differing in voltage-dependence are expressed by neurons of the rat neostriatum. Neurosci Lett 103:331-7 [PubMed]

Turrigiano GG, Marder E, Abbott LF (1996) Cellular short-term memory from a slow potassium conductance. J Neurophysiol 75:963-6 [Journal] [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

Wilson C (1995) The contribution of cortical neurons to the firing patterns of striatal spiny neurons Models of information processing in the basal ganglia, Houk J:Davis J:Beiser D, ed. pp.29

Biddell K, Johnson J (2013) A Biophysical Model of Cortical Glutamate Excitation of Medium Spiny Neurons in the Dorsal Lateral Striatum 56th IEEE Midwest Symposium on Circuits and Systems [Journal]

   Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013) [Model]

Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH (2016) Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71 [Journal] [PubMed]

   Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016) [Model]

Gurney KN, Humphries MD, Redgrave P (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 13:e1002034 [Journal] [PubMed]

   Cortico-striatal plasticity in medium spiny neurons (Gurney et al 2015) [Model]

Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]

   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]

Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015-23 [PubMed]

Lepora NF, Overton PG,Gurney K (2012) Efficient fitting of conductance-based model neurons from somatic current clamp. J. Comp. Neuro. 32(1):1-24 [Journal] [PubMed]

   Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011) [Model]

Scheler G (2014) Learning intrinsic excitability in medium spiny neurons F1000Research 2:88 [Journal]

   Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014) [Model]

Steephen JE, Manchanda R (2009) Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. J Comput Neurosci [Journal] [PubMed]

   Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009) [Model]

(29 refs)