Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151126
Several recent results suggest that boosting the CREB pathway improves hippocampal-dependent memory in healthy rodents and restores this type of memory in an AD mouse model. However, not much is known about how CREB-dependent neuronal alterations in synaptic strength, excitability and LTP can boost memory formation in the complex architecture of a neuronal network. Using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD.
Reference:
1 . Bianchi D, De Michele P, Marchetti C, Tirozzi B, Cuomo S, Marie H, Migliore M (2014) Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus 24:165-77 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus; Hippocampus CA1 basket cell;
Channel(s): I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP; I Cl, leak; Ca pump;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): STDP; Aging/Alzheimer`s; Depolarization block; Storage/recall; CREB;
Implementer(s): Bianchi, Daniela [danielabianchi12 -at- gmail.com]; De Michele, Pasquale [pasquale.demichele at unina.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus; GabaA; GabaB; AMPA; NMDA; I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP; I Cl, leak; Ca pump; Gaba; Glutamate;
/
Bianchietal
Results
Weights
readme.txt
ANsyn.mod *
bgka.mod *
burststim2.mod
cad.mod
cagk.mod *
cal.mod *
calH.mod
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gskch.mod *
h.mod
IA.mod
ichan2.mod *
Ih.mod *
kadist.mod
kaprox.mod
Kaxon.mod *
kca.mod *
Kdend.mod *
kdr.mod
kdrax.mod
km.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3.mod
na3dend.mod
na3notrunk.mod
Naaxon.mod *
Nadend.mod *
nap.mod *
Nasoma.mod *
nax.mod
nca.mod *
nmdanet.mod
regn_stim.mod
somacar.mod *
STDPE2Syn2.mod
axoaxonic_cell17S.hoc *
basket_cell17S.hoc *
bistratified_cell13S.hoc *
burst_cell.hoc *
HAM_SR1.ses
mosinit.hoc
olm_cell2.hoc
PureRec_phase.hoc
PureRec_phase_ser.hoc
pyramidal_cell4.hoc
ranstream.hoc *
stim_cell.hoc
Sto_phase.hoc
Sto_phase_ser.hoc
                            
TITLE Borg-Graham type generic K-A channel
UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)
	celsius 	(degC)
	gkabar=.01 (mho/cm2)
        vhalfn=-33.6   (mV)
        vhalfl=-83   (mV)
        a0l=0.08      (/ms)
        a0n=0.02    (/ms)
        zetan=-3    (1)
        zetal=4    (1)
        gmn=0.6   (1)
        gml=1   (1)
}


NEURON {
	SUFFIX borgka
	USEION k READ ek WRITE ik
        RANGE gkabar,gka, ik
        GLOBAL ninf,linf,taul,taun
}

STATE {
	n
        l
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)

}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states { 
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+ a)
        taul = betl(v)/(q10*a0l*(1 + a))
}


Loading data, please wait...