Drosophila 3rd instar larval aCC motoneuron (Gunay et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:152028
Single compartmental, ball-and-stick models implemented in XPP and full morphological model in Neuron. Paper has been submitted and correlates anatomical properties with electrophysiological recordings from these hard-to-access neurons. For instance we make predictions about location of the spike initiation zone, channel distributions, and synaptic input parameters.
Reference:
1 . G√ľnay C, Sieling FH, Dharmar L, Lin WH, Wolfram V, Marley R, Baines RA, Prinz AA (2015) Distal spike initiation zone location estimation by morphological simulation of ionic current filtering demonstrated in a novel model of an identified Drosophila motoneuron. PLoS Comput Biol 11:e1004189 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Drosophila;
Cell Type(s):
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): Cholinergic Receptors;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; XPP; MATLAB;
Model Concept(s):
Implementer(s): Gunay, Cengiz [cgunay at emory.edu]; Sieling, Fred [fred.sieling at gmail.com]; Prinz, Astrid [astrid.prinz at emory.edu];
Search NeuronDB for information about:  Cholinergic Receptors; I Na,p; I Na,t; I A; I K;
/
Gunay_etal_2014
channels
@model_data_vcs_Kprepulse
all_channels.m
Kfs.mat
                            
ModelDB scripts have detected that binary file '/Gunay_etal_2014/channels/Kfs.mat' is not displayable. You may download the file to examine if desired.

<- Select file from this column.
Loading data, please wait...