PreBotzinger Complex inspiratory neuron with NaP and CAN currents (Park and Rubin 2013)

 Download zip file 
Help downloading and running models
Accession:152292
We have built on earlier models to develop a single-compartment Hodgkin-Huxley type model incorporating NaP and CAN currents, both of which can play important roles in bursting of inspiratory neurons in the PreBotzinger Complex of the mammalian respiratory brain stem. The model tracks the evolution of membrane potential, related (in)activation variables, calcium concentration, and available fraction of IP3 channels. The model can produce several types of bursting, presented and analyzed from a dynamical systems perspective in our paper.
Reference:
1 . Park C, Rubin JE (2013) Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Botzinger complex neurons. J Comput Neurosci 34:345-66 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Respiratory column neuron; PreBotzinger complex neuron;
Channel(s): I Na,p; I K; I CAN; I Sodium;
Gap Junctions:
Receptor(s): AMPA; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: XPP;
Model Concept(s): Bursting;
Implementer(s): Rubin, Jonathan E [jonrubin at pitt.edu]; Park, Choongseok [cpark at ncat.edu];
Search NeuronDB for information about:  AMPA; IP3; I Na,p; I K; I CAN; I Sodium;

Park C, Rubin JE (2013) Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Botzinger complex neurons. J Comput Neurosci 34:345-66[PubMed]

References and models cited by this paper

References and models that cite this paper

Adams WB, Benson JA (1985) The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neurone R15. Prog Biophys Mol Biol 46:1-49 [PubMed]

Bertram R, Sherman A, Satin LS (2010) Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol 654:261-79 [PubMed]

Best J, Borisyuk A, Rubin J, Terman D, Wechselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network Siam J App Dyn Sys 4:1107-1139

Butera RJ, Clark JW, Canavier CC, Baxter DA, Byrne JH (1995) Analysis of the effects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. J Comput Neurosci 2:19-44 [Journal] [PubMed]

   Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995) [Model]

Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382-97 [Journal] [PubMed]

Butera RJ, Terman D, Rubin J, Smith JC (2005) Oscillatory bursting mechanisms in respiratory pacemaker neurons and networks Bursting: The Genesis of Rhythm in the Nervous System, Coombes S:Bresloff PC, ed. pp.303

Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 42:181-90 [PubMed]

Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBotzinger complex. J Physiol 582:1047-58

Csercsik D, Farkas I, Hrabovszky E, Liposits Z (2012) A simple integrative electrophysiological model of bursting GnRH neurons. J Comput Neurosci 32(1):119-36 [Journal] [PubMed]

   A simple integrative electrophysiological model of bursting GnRH neurons (Csercsik et al. 2011) [Model]

Del Negro CA, Hayes JA, Rekling JC (2011) Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons. J Neurosci 31:1017-22

Del Negro CA, Koshiya N, Butera RJ, Smith JC (2002) Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro. J Neurophysiol 88:2242-50 [PubMed]

Del Negro CA, Morgado-Valle C, Feldman JL (2002) Respiratory rhythm: an emergent network property? Neuron 34:821-30 [PubMed]

Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25:446-53 [PubMed]

Doi A, Ramirez JM (2010) State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 30:8251-62

Duan W, Lee K, Herbison AE, Sneyd J (2011) A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. J Theor Biol 276:22-34

Dunmyre JR, Del Negro CA, Rubin JE (2011) Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 31:305-28

Errington AC, Renger JJ, Uebele VN, Crunelli V (2010) State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 30:14843-53

Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232-42 [PubMed]

Feldman JL, Smith JC (1989) Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann N Y Acad Sci 563:114-30 [PubMed]

Fletcher PA, Li YX (2009) An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys J 96:4514-24 [PubMed]

Hughes SW, Errington A, Lorincz ML, Kekesi KA, Juhasz G, Orban G, Cope DW, Crunelli V (2008) Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons. Brain Res 1235:12-20 [PubMed]

Johnson SM, Smith JC, Funk GD, Feldman JL (1994) Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J Neurophysiol 72:2598-608 [Journal] [PubMed]

Koizumi H, Smith JC (2008) Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. J Neurosci 28:1773-85 [PubMed]

McCrimmon DR, Mitchell GS, Alheid GF (2008) Overview: the neurochemistry of respiratory control. Respir Physiol Neurobiol 164:1-2 [PubMed]

Mironov SL (2008) Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586:2277-91 [PubMed]

Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113-25 [PubMed]

Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Role of persistent sodium current in mouse preBotzinger Complex neurons and respiratory rhythm generation. J Physiol 580:485-96 [PubMed]

Paton JF, Abdala AP, Koizumi H, Smith JC, St-John WM (2006) Respiratory rhythm generation during gasping depends on persistent sodium current. Nat Neurosci 9:311-3 [PubMed]

Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105-17 [PubMed]

Pena F, Ramirez JM (2002) Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J Neurosci 22:11055-64 [PubMed]

Ptak K, Zummo GG, Alheid GF, Tkatch T, Surmeier DJ, McCrimmon DR (2005) Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. J Neurosci 25:5159-70 [PubMed]

Ramirez JM, Koch H, Garcia AJ, Doi A, Zanella S (2011) The role of spiking and bursting pacemakers in the neuronal control of breathing. J Biol Phys 37:241-61

Rekling JC, Feldman JL (1998) PreBotzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60:385-405 [PubMed]

Rinzel JA (1987) A formal classification of bursting mechanisms in excitable systems Proc Intl Congress Mathematicians, Gleason AM, ed. pp.1578

Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci U S A 106:2939-44 [Journal] [PubMed]

   Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009) [Model]

Rybak IA, Abdala AP, Markin SN, Paton JF, Smith JC (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165:201-20 [PubMed]

Saftenku EE (2012) Models of calcium dynamics in cerebellar granule cells. Cerebellum 11:85-101

Shao XM, Feldman JL (2000) Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBotzinger complex inspiratory neurons. J Neurophysiol 83:1243-52

Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir Physiol 122:131-47

Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726-9 [PubMed]

Terman D (1992) The transition from bursting to continuous spiking in excitable membrane models J Nonlinear Sci 2:135-182

Thoby-Brisson M, Ramirez JM (2001) Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J Neurophysiol 86:104-12

Topolnik L (2012) Dendritic calcium mechanisms and long-term potentiation in cortical inhibitory interneurons. Eur J Neurosci 35:496-506

Toporikova N, Butera RJ (2011) Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 30:515-28

Viemari JC, Garcia AJ, Doi A, Ramirez JM (2011) Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. Eur J Neurosci 33:2228-37

Viemari JC, Ramirez JM (2006) Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 95:2070-82

Fietkiewicz C, Shafer GO, Platt EA, Wilson CG (2016) Variability in respiratory rhythm generation: In vitro and in silico models Communications in Nonlinear Science and Numerical Simulation 32:158-168 [Journal]

   pre-Bötzinger complex variability (Fietkiewicz et al. 2016) [Model]

Harris KD, Dashevskiy T, Mendoza J, Garcia AJ, Ramirez JM, Shea-Brown E (2017) Different roles for inhibition in the rhythm-generating respiratory network. J Neurophysiol :jn.00174.2017 [Journal] [PubMed]

   Different roles for inhibition in the rhythm-generating respiratory network (Harris et al 2017) [Model]

(48 refs)