Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:153280
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
Reference:
1 . Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129-44 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell;
Channel(s): I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Connectivity matrix; Laminar Connectivity;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; Glutamate; I Sodium; I Calcium; I Potassium;
/
superdeep
cells
connectivity
datasets
jobscripts
results
setupfiles
stimulation
README.txt
ch_CavL.mod
ch_CavLZ.mod
ch_CavN.mod
ch_CavT.mod
ch_HCNp.mod
ch_KCaS.mod
ch_Kdrfast.mod
ch_Kdrp.mod
ch_Kdrslow.mod
ch_KvA.mod
ch_KvAdistp.mod
ch_KvAproxp.mod
ch_KvCaB.mod
ch_leak.mod
ch_Navp.mod
ch_NavPVBC.mod
iconc_Ca.mod
iconc_CaZ.mod
MyExp2Sid.mod
MyExp2Sidnw.mod *
mynetstim.mod *
repeatconn.mod
hg_diff.out *
hg_status.out *
ModelDB Quick Start Guide.pdf
modelview.hoc
superdeep.hoc
vercomment.txt *
version.txt *
                            
TITLE N-type calcium channel
 
COMMENT
N-Type Ca2+ channel
From: Aradi and Holmes, 1999
Updates:
20100910-MJCASE-documentation in progress
ENDCOMMENT

VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM
 
UNITS {
	(mA) =(milliamp)
	(mV) =(millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
	FARADAY = 96520 (coul)
	R = 8.3134	(joule/degC)
}
 
 
NEURON {
	SUFFIX ch_CavN				: The name of the mechanism
	USEION ca READ eca WRITE ica VALENCE 2 
	RANGE g
	RANGE gmax
	RANGE cinf, ctau, dinf, dtau
	RANGE myi
	THREADSAFE
}
 
INDEPENDENT {t FROM 0 TO 100 WITH 100 (ms)}


PARAMETER {
	v (mV) 					: membrane potential
      celsius (degC) : temperature - set in hoc; default is 6.3
	gmax (mho/cm2)		: conductance flux - defined in CavT but not here
}
 
STATE {
	c d		
}
 
ASSIGNED {			: assigned (where?)
	dt (ms) 				: simulation time step

	ica (mA/cm2)	: current flux
	g (mho/cm2)	: conductance flux
	eca (mV)		: reversal potential

	cinf dinf
	ctau (ms)
	dtau (ms) 
	cexp dexp      
	myi (mA/cm2)
}

BREAKPOINT {
	SOLVE states : what is the method? let's specify one
    g = gmax*c*c*d
	ica = g*(v-eca)
	myi = ica
}
 
UNITSOFF
 
INITIAL {
	trates(v)
	c = cinf
	d = dinf
}

? states : verbatim blocks are not thread safe (perhaps related, this mechanism cannot be used with cvode)
PROCEDURE states() {	:Computes state variables m, h, and n 
        trates(v)	:      at the current v and dt.
	c = c + cexp*(cinf-c)
	d = d + dexp*(dinf-d)
        :VERBATIM				
        :return 0;
        :ENDVERBATIM
}
 
LOCAL q10

PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL  alpha, beta, sum
       :q10 = 3^((celsius - 6.3)/10)
       q10 = 3^((celsius - 34)/10)
                :"c" NCa activation system
        alpha = -0.19*vtrap(v-19.88,-10)
	beta = 0.046*exp(-v/20.73)
	sum = alpha+beta        
	ctau = 1/sum      cinf = alpha/sum
                :"d" NCa inactivation system
	alpha = 0.00016*exp(-v/48.4) : this is multiplied, not divided in Aradi & Holmes formula
	beta = 1/(exp((-v+39)/10)+1)
	sum = alpha+beta        
	dtau = 1/sum      dinf = alpha/sum
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL tinc
	TABLE  cinf, cexp, dinf, dexp, ctau, dtau
	DEPEND dt, celsius FROM -100 TO 100 WITH 200
                           
	rates(v)	: not consistently executed from here if usetable_hh == 1
				: so don't expect the tau values to be tracking along with
				: the inf values in hoc

	tinc = -dt * q10
	cexp = 1 - exp(tinc/ctau)
	dexp = 1 - exp(tinc/dtau)
}

FUNCTION vtrap(x,y) {  :Traps for 0 in denominator of rate eqns.
	if (fabs(x/y) < 1e-6) {
		vtrap = y*(1 - x/y/2)
	}else{  
		vtrap = x/(exp(x/y) - 1)
	}
}

UNITSON


Loading data, please wait...