Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:153280
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
Reference:
1 . Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129-44 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell;
Channel(s): I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Connectivity matrix; Laminar Connectivity;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; Glutamate; I Sodium; I Calcium; I Potassium;
/
superdeep
cells
connectivity
datasets
jobscripts
results
setupfiles
stimulation
README.txt
ch_CavL.mod
ch_CavLZ.mod
ch_CavN.mod
ch_CavT.mod
ch_HCNp.mod
ch_KCaS.mod
ch_Kdrfast.mod
ch_Kdrp.mod
ch_Kdrslow.mod
ch_KvA.mod
ch_KvAdistp.mod
ch_KvAproxp.mod
ch_KvCaB.mod
ch_leak.mod
ch_Navp.mod
ch_NavPVBC.mod
iconc_Ca.mod
iconc_CaZ.mod
MyExp2Sid.mod
MyExp2Sidnw.mod *
mynetstim.mod *
repeatconn.mod
hg_diff.out *
hg_status.out *
ModelDB Quick Start Guide.pdf
modelview.hoc
superdeep.hoc
vercomment.txt *
version.txt *
                            
TITLE A-type potassium channel

COMMENT
A-type K+ channel
From: 
Updates:
20100910-MJCASE-documented
ENDCOMMENT

VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	v (mV)
        ek (mV)
      celsius (degC) : temperature - set in hoc; default is 6.3
	gmax=.01 (mho/cm2)
        vhalfn=-33.6   (mV)
        vhalfl=-83   (mV)
        a0l=0.08      (/ms)
        a0n=0.02    (/ms)
        zetan=-3    (1)
        zetal=4    (1)
        gmn=0.6   (1)
        gml=1   (1)
}


NEURON {
	SUFFIX ch_KvA
	USEION k READ ek WRITE ik
        RANGE gmax,g, ik
        RANGE myi
        GLOBAL ninf,linf,taul,taun : note that these four are not thread safe
    THREADSAFE
}

STATE {
	n
        l
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        g
	myi (mA/cm2)
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	g = gmax*n*l
	ik = g*(v-ek)
	myi = ik

}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states { 
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+ a)
        taul = betl(v)/(q10*a0l*(1 + a))
}


Loading data, please wait...