Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)

 Download zip file 
Help downloading and running models
Accession:153355
"... To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. ... We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics. "
Reference:
1 . Lamb DG, Calabrese RL (2013) Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 8:e79267 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Leech;
Cell Type(s): Leech heart motor neuron (HE);
Channel(s): I Na,p; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Temporal Pattern Generation; Detailed Neuronal Models; Parameter sensitivity; Conductance distributions;
Implementer(s): Lamb, Damon [Damon.Lamb at neurology.ufl.edu];
Search NeuronDB for information about:  I Na,p; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak;
/
LambCalabrese2013
lgenesis-noX
include
absff_func_ext.h
absff_header.h
axon_ext.h
axon_g@.h
axon_struct.h
basic_g@.h
buf_defs.h
buf_ext.h
buf_struct.h
buffer_g@.h
conc_defs.h
conc_ext.h
conc_struct.h
concen_g@.h
copyright.h
dev_ext.h
dev_struct.h
devices_g@.h
diskio_defs.h
diskio_ext.h
diskio_func_ext.h
diskio_g@.h
diskio_struct.h
fac_debug.h
fac_defs.h
fac_ext.h
fac_struct.h
FMT1.h
FMT1_ext.h
FMT1_func_ext.h
FMT1_struct.h
hash.h
header.h
hh_ext.h
hh_g@.h
hh_struct.h
hh_struct_defs.h
hines_defs.h
hines_ext.h
hines_g@.h
hines_struct.h
interface.h
iofunc.h
kin_ext.h
kin_g@.h
kin_struct.h
netcdf.h
netcdf_ext.h
netcdf_func_ext.h
netcdf_struct.h
newconn_defs.h
newconn_ext.h
newconn_g@.h
newconn_struct.h
nrutil.h
NULLArgv.h
olf_ext.h
olf_g@.h
olf_struct.h
out_defs.h
out_ext.h
out_struct.h
output_g@.h
par_ext.h
param_defs.h
param_ext.h
param_g@.h
param_struct.h
per_ext.h
per_struct.h
personal_g@.h
pore_ext.h
pore_g@.h
pore_struct.h
profile.h
seg.h
seg_defs.h
seg_ext.h
seg_struct.h
segment_g@.h
shell.h
shell_defs.h
shell_ext.h
shell_func_ext.h
shell_g@.h
shell_struct.h
sim.h
sim_defs.h
sim_ext.h
sim_func_ext.h
sim_struct.h
sim_version.h
simconn_ext.h
simconn_g@.h
simconn_struct.h *
spike_ext.h
spike_struct.h
sprng.h
sprng_f.h
struct_defs.h
syn_ext.h
syn_struct.h
synapse_g@.h
synaptic_event.h
SynGS_ext.h *
SynGS_struct.h
system_deps.h
tool_ext.h
tool_struct.h
toolconn_ext.h
toolconn_g@.h
toolconn_struct.h *
tools.h
user_ext.h
user_g@.h
user_struct.h
                            
/* $Id: spike_struct.h,v 1.1.1.1 2005/06/14 04:38:28 svitak Exp $
**
** $Log: spike_struct.h,v $
** Revision 1.1.1.1  2005/06/14 04:38:28  svitak
** Import from snapshot of CalTech CVS tree of June 8, 2005
**
** Revision 1.1  1998/03/31 22:10:24  dhb
** Initial revision
**
*/

#include "struct_defs.h"
 
struct doxc_type  {
  ELEMENT_TYPE
	int num_bins;
	float binwidth;
	int reset_mode;
	float threshold;
	int no1spks;
	int no2spks;
  float *sp1times;
  float *sp2times;
	int *xcarray;
	int curr1idx;
	int curr2idx;
	int calc1idx;
	int calc2idx;
	int maxspikes;
	float wintime;
	int dontnow;
	int allocated;
};
 
struct doac_type  {
	ELEMENT_TYPE
	int num_bins;
	float binwidth;
	int reset_mode;
	float threshold;
	int nospks;
	float *sptimes;
	int *acarray;
	int curridx;
	int calcidx;
	float wintime;
	int dont;
	int maxspikes;
	int allocated;
};
 
struct dointvl_type  {
	ELEMENT_TYPE
	int num_bins;
	float binwidth;
	int reset_mode;
	float threshold;
	int nospks;
	float fstspk;
	int *intvlarray;
	int allocated;
};

struct dosum_type  {
	ELEMENT_TYPE
	double insum;
};

#define NO_CLEAR_BINS 0
#define CLEAR_BINS 1
#define NEW_TABLE 2
#define FREE_RUN 0
#define TRIGGERED 1
#define SPIKES 2

struct new_peristim_type {
    ELEMENT_TYPE
    int     output;
    float   threshold;
    float   binwidth;
    int     num_bins;
    short   trigger_mode; /* FREE_RUN or TRIGGERED or SPIKES*/
    short   reset_mode;  /* NO_CLEAR_BINS or CLEAR_BINS */
    int     *table;
    int     bin_index;
    int     bin_steps;
    short   spiking;
    short   allocated;
};

struct new_freq_mon_type {
    BUFFER_TYPE
    float   exponent;
    float   frequency;
};

#define TABCREATE 200
#define TABFILL 201
#define TUPDATE 250
#define OPEN 300
#define CLOSE 301
#define FLUSH 302

struct timetable_type {
    ELEMENT_TYPE
    float activation;
    float act_val;
    int seed;
    int method;
    float meth_desc1;
    float meth_desc2;
    int meth_desc3;
    float maxtime;
    int tabpos;
    int maxpos;
	char *fname;
    float *timetable;
    short allocated;
};

struct event_tofile_type {
    ELEMENT_TYPE
    char *fname;
    FILE *fp;
    short open;
    float threshold;
};


Loading data, please wait...