Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:154096
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
Reference:
1 . Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Long-term Synaptic Plasticity; Aging/Alzheimer`s; Deep brain stimulation; Homeostasis;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
RowanEtAl2014
batchscripts
mod
README
alz.hoc
alzinfo.m
autotune.hoc *
basestdp.hoc *
batch.hoc *
batch2.hoc *
batchcommon
checkirreg.hoc *
clusterrun.sh
col.dot *
col.hoc *
comppowspec.hoc *
condisconcellfig.hoc *
condisconpowfig.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
e2hubsdisconpow.hoc *
e2incconpow.hoc *
filtutils.hoc *
flexinput.hoc
geom.hoc *
graphplug.hoc *
grvec.hoc *
infot.hoc *
init.hoc *
labels.hoc *
load.hoc *
local.hoc *
makepopspikenq.hoc *
matfftpowplug.hoc *
matpmtmplug.hoc *
matpmtmsubpopplug.hoc *
matspecplug.hoc *
mosinit.hoc
network.hoc *
nload.hoc *
nqpplug.hoc *
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
plot.py
plotavg.py
plotbatch.sh
plotbatchcluster.sh
plotdeletions.py
plotntes.py
powchgtest.hoc *
pyhoc.py
python.hoc *
pywrap.hoc *
ratlfp.dat *
redE2.hoc *
run.hoc
runsim.sh
setup.hoc *
shufmua.hoc *
sim.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
vsampenplug.hoc *
writedata.hoc
xgetargs.hoc *
                            
// $Id: matpmtmsubpopplug.hoc,v 1.3 2010/10/10 02:34:03 samn Exp $ 


// "plugin" (for batch.hoc) to do analysis on sim data

// want power of: subpop E, total E , total E - subpop . . . bring I along for the ride

binsz = 5 // bin size in ms
sampr = 1e3 / binsz // sampling rate
initAllMyNQs() // initialize counts per time, by type, column, etc.

objref nqf,nqtmp
objref vintraty[numcols][CTYPi] // HUB(SIMTYP) subpop within column
objref vintraE[numcols]         // total of all Es within column
objref vintraI[numcols]         // all Is within column
objref vintraEMINUS[numcols]    // total minus subpop, within column
objref vintraIMINUS[numcols]    // total minus subpop, within column

sz=nqCTY[0].v[E2].size

proc myrsz () { // util func to call matpmtm and add results to nqf
  {vec.resize(0) vec.copy($o1) vec.sub(vec.mean)}
  nqtmp=matpmtm(vec,sampr)
  if(nqf.fi("f")==-1) {nqf.resize("f") nqf.v[nqf.m-1].copy(nqtmp.getcol("f"))}
  {nqf.resize($s2) nqf.v[nqf.m-1].copy(nqtmp.getcol("pow"))}
  nqsdel(nqtmp)
}

nqf=new NQS()

for i = 0 , numcols - 1 { // setup all the vectors that will have matpmtm run on them
  {vintraE[i]=new Vector(sz)  vintraI[i]=new Vector(sz)}
  {vintraIMINUS[i]=new Vector(sz) vintraEMINUS[i]=new Vector(sz)}
  for j = 0, CTYPi - 1 {
    if(nqCTY[i].v[j].size>0) {
      
      if(j==SIMTYP) {
        vintraty[i][j]=new Vector(sz)
        vintraty[i][j].copy(nqCTY[i].v[j]) // subpop
      }
      
      if(ice(j)) {
        vintraI[i].add(nqCTY[i].v[j])
        if(j!=SIMTYP) vintraIMINUS[i].add(nqCTY[i].v[j]) // total I minus I hub subpop
      } else {
        vintraE[i].add(nqCTY[i].v[j]) // total
        if(j!=SIMTYP) vintraEMINUS[i].add(nqCTY[i].v[j]) // total E minus E hub subpop
      }
    }
  }
}

for i=0,numcols-1 {
  {sprint(tstr,"C%dintraE",i) myrsz(vintraE[i],tstr)}
  if(ice(SIMTYP)) {
    {sprint(tstr,"C%dintraIMINUS",i) myrsz(vintraIMINUS[i],tstr)}
  } else {
    {sprint(tstr,"C%dintraEMINUS",i) myrsz(vintraEMINUS[i],tstr)}
  }
  {sprint(tstr,"C%dintraI",i) myrsz(vintraI[i],tstr)}
  for j=0,CTYPi-1 if(vintraty[i][j]!=nil) {
    if(vintraty[i][j].size>0) {sprint(tstr,"C%dintra%s",i,CTYP.o(j).s) myrsz(vintraty[i][j],tstr)}
  }
}

sprint(tstr,"/u/samn/intfcol/data/%s_nqpmtm_SUBPOPpow_A.nqs",strv)
nqf.sv(tstr)
nqsdel(nqf)


Loading data, please wait...