Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:154096
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
Reference:
1 . Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Long-term Synaptic Plasticity; Aging/Alzheimer`s; Deep brain stimulation; Homeostasis;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
RowanEtAl2014
batchscripts
mod
README
alz.hoc
alzinfo.m
autotune.hoc *
basestdp.hoc *
batch.hoc *
batch2.hoc *
batchcommon
checkirreg.hoc *
clusterrun.sh
col.dot *
col.hoc *
comppowspec.hoc *
condisconcellfig.hoc *
condisconpowfig.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
e2hubsdisconpow.hoc *
e2incconpow.hoc *
filtutils.hoc *
flexinput.hoc
geom.hoc *
graphplug.hoc *
grvec.hoc *
infot.hoc *
init.hoc *
labels.hoc *
load.hoc *
local.hoc *
makepopspikenq.hoc *
matfftpowplug.hoc *
matpmtmplug.hoc *
matpmtmsubpopplug.hoc *
matspecplug.hoc *
mosinit.hoc
network.hoc *
nload.hoc *
nqpplug.hoc *
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
plot.py
plotavg.py
plotbatch.sh
plotbatchcluster.sh
plotdeletions.py
plotntes.py
powchgtest.hoc *
pyhoc.py
python.hoc *
pywrap.hoc *
ratlfp.dat *
redE2.hoc *
run.hoc
runsim.sh
setup.hoc *
shufmua.hoc *
sim.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
vsampenplug.hoc *
writedata.hoc
xgetargs.hoc *
                            
// $Id: nrnoc.hoc,v 1.74 2007/11/20 07:51:52 billl Exp $

proc nrnoc () {}

// Users should not edit nrnoc.hoc or default.hoc.  Any local 
// changes to these files should be made in local.hoc.

// key '*&*' is picked up by to indicate command for emacs
proc elisp () { printf("*&* %s\n",$s1) }
// if (not exists(simname)) { strdef simname, output_file, datestr, comment }

// Simctrl.hoc will automatically load stdgraph.hoc which automatically
// loads stdrun.hoc
strdef temp_string_, user_string_  // needed for simctrl
/* Global variable default values.  NOTE that stdrun.hoc, stdgraph.hoc
and simctrl.hoc all contain variable definitions and thus default.hoc
should be loaded after these files */
load_file("default.hoc")      /* Load default.hoc */

/* Allows arrays of strings */
objref hoc_obj_[2]
load_file("stdgui.hoc") // don't want to encounter other String tempate defs
load_file("simctrl.hoc")

proc run () {
  running_ = 1
  stdinit()
  continueRun(tstop)
  finish()
}

proc continueRun () { local rt, rtstart, ts
  if (numarg()==1) ts=$1 else ts=t+1e3
  realtime = 0  rt = screen_update_invl  rtstart = startsw()
  eventcount=0
  eventslow=1
  stoprun = 0
  if (using_cvode_) {
    if (cvode.use_local_dt || (cvode.current_method()%10) == 0) {
      cvode.solve(ts)
      flushPlot()
      realtime = startsw() - rtstart
      return
    }
  } else {
    ts -= dt/2
  }
  while (t<ts && stoprun==0) {
    step()
    realtime = startsw() - rtstart
    if (realtime >= rt) {
      //                        if (!stdrun_quiet) fastflushPlot()
      screen_update()
      //really compute for at least screen_update_invl
      realtime = startsw() - rtstart
      rt = realtime + screen_update_invl
    }
  }
  if (using_cvode_ && stoprun == 0) { // handle the "tstop" event
    step() // so all recordings take place at tstop
  }
  flushPlot()
  realtime = startsw() - rtstart
}

proc stdinit() {
        cvode_simgraph()
        realtime = 0
        setdt()
        init()
        initPlot()
}

proc init () {
  cvode_simgraph()
  initMech()
  initMisc1()

  // Initialize state vars then calculate currents
  // If user hand-set v in initMisc1() then v_init should be > 1000,
  // else all compartments will be set to v_init
  if (v_init < 1000) {
    finitialize(v_init)
  } else {
    finitialize()
  }

  // Set ca pump and leak channel for steady state
  setMemb()

  initMisc2()
  if (cvode_active()) cvode.re_init() else fcurrent()
  frecord_init()
}

// Initialization of mechanism variables
// NOTE: if any changes are made to the NEURON block of any local mod
// file, the user must add the necessary inits to initMisc1()
proc initMech () { 
  forall {
    if ((!ismembrane("pas")) && (!ismembrane("Passive"))) { 
      // Allow for either pas or Passive mod file usage
      // errorMsg("passive not inserted") 
    }

    if (ismembrane("na_ion")) { 
      nai = na_init
      nai0_na_ion = na_init
    }
    
    if (ismembrane("k_ion")) {
      ki = k_init
      ki0_k_ion = k_init
    }
    
    if (ismembrane("ca_ion")) { 
      cai = ca_init
      cai0_ca_ion = ca_init
    }
  }
}

//* setMemb complex -- multiple names for passive mech
//** declarations
iterator scase() { local i
  for i = 1, numarg() { temp_string_ = $si iterator_statement }}
objref paslist,pasvars[3],XO
double pasvals[2],x[1]
paslist = new List()
for ii=0,2 pasvars[ii]= new String()
for scase("fastpas","pas","Pass","Passive") paslist.append(new String(temp_string_))

//** getval(),setval() -- return/set the hoc value of a string
func retval () { return getval($s1) }
func getval () { 
  sprint(temp_string2_,"x=%s",$s1)
  execute(temp_string2_)
  return x
}
proc setval () { 
  sprint(temp_string2_,"%s=%g",$s1,$2)
  execute(temp_string2_)
}

//** findpas()
// assumes that we are starting in a live section since looks for pass mech there
qx_=0
proc findpas () {
  for ii=0,paslist.count-1 {
    XO=paslist.object(ii)
    if (ismembrane(XO.s)) {
      // print XO.s,"found"
      pasvars[2].s=XO.s
      sprint(pasvars[0].s,"g_%s(qx_)",XO.s)
      for scase("e","erev","XXXX") {  // look for the proper prefix
        sprint(temp_string_,"%s_%s",temp_string_,XO.s)
        if (name_declared(temp_string_)==1) break
      }
      if (name_declared(temp_string_)==0) { // not found
        printf("SetMemb() in nrnoc.hoc: Can't find proper 'erev' prefix for %s\n",XO.s)
      } else {
        sprint(pasvars[1].s,"%s(qx_)",temp_string_)
      }
    }
  }
}

proc setMemb () {
  if (!secp()) return
  findpas() // assume that passive name is the same in all sections
  forall for (qx_,0) {  // will eventually want 'for (x)' to handle all the segments
    if (ismembrane(pasvars[2].s)) {
        for ii=0,1 pasvals[ii]=getval(pasvars[ii].s)
        setmemb2()
        for ii=0,1 setval(pasvars[ii].s,pasvals[ii])
    }
  }
}

// secp() determine whether any sections exist
func secp () { local n
  n=0
  forall n+=1
  if (n>0) return 1 else return 0
}

func setother () {return 0} // callback stub
proc setmemb2 () { local iSum, ii, epas, gpas
  if (!secp()) return
  gpas=pasvals[0] epas=pasvals[1]
  // Setup steady state voltage using leak channel
  iSum = 0.0
  if (ismembrane("na_ion")) { iSum += ina(qx_) }
  if (ismembrane("k_ion"))  { iSum += ik(qx_)  }
  if (ismembrane("ca_ion")) { iSum += ica(qx_) }
  iSum += setother()

  if (iSum == 0) {        // Passive cmp so set e_pas = v
    epas = v
  } else {
    if (gpas > 0) {    // Assume g set by user, calc e
      epas = v + iSum/gpas

    } else {            // Assume e set by user, calc g
      if (epas != v) {
        gpas = iSum/(epas - v)
      } else { gpas=0 }
    }
    if (gpas < 0) errorMsg("bad g", gpas)
    if (epas < -100 || epas > 0) {
      printf(".")
      // printf("%s erev: %g %g %g\n",secname(),e_pas,ina,ik)
    }
  }
  pasvals[0]=gpas pasvals[1]=epas
}

proc finish () {
  /* Called following completion of continueRun() */

finishMisc()

if (graph_flag == 1) {
  if (iv_flag == 1) {
    flushPlot()
    doEvents()
  } else {
    graphmode(-1)
    plt(-1)
  }
}

if (print_flag == 1) {
  wopen("")
}
}

/*------------------------------------------------------------
User definable GRAPHICS and PRINTING routines
------------------------------------------------------------*/

proc outputData() {
  // Default procedure - if outputData() doesn't exist in the run file

  if (graph_flag == 1) {
    if (iv_flag == 1) {
      Plot()
      rt = stopsw()
      if (rt > realtime) {
        realtime = rt
        fastflushPlot()
        doNotify()
        if (realtime == 2 && eventcount > 50) {
          eventslow = int(eventcount/50) + 1
        }
        eventcount = 0
      }else{
        eventcount = eventcount + 1
        if ((eventcount%eventslow) == 0) {
          doEvents()
        }
      }

    } else {
      graph(t)
    }
  }

  if (print_flag == 1) { 
    if (t%printStep <= printStep) { printOut() }
  }
}

proc printOut() {
  /* Default procedure - if printOut() doesn't exist in the run file */
}

proc initGraph() {
  /* Default procedure - if initGraph() doesn't exist in the run file */

graph()
}

proc initPrint() {
  /* Default procedure - if initPrint() doesn't exist in the run file */

wopen(output_file)
}

/*------------------------------------------------------------
User definable BATCH RUN routines
------------------------------------------------------------*/

proc nextrun() {
  // Called from finishmisc() following completion of batch in an autorun
  wopen("")   
  runnum = runnum + 1
  sprint(output_file,"data/b%s.%02d", datestr, runnum)
}                       

// commands for emacs
proc update_runnum() { 
  runnum = $1
  sprint(output_file,"data/%s.%02d", datestr, runnum)
  print "^&^ (progn (sim-index-revert)(setq sim-runnum ",runnum,"))" }
proc nrn_write_index() { printf("&INDEX& %s\n",$s1) }
proc nrn_update () { elisp("nrn-update") }
proc nrn_message () { printf("!&! %s\n",$s1) } 

/*------------------------------------------------------------
User definable INITIALIZATION and FINISH routines
------------------------------------------------------------*/

// Default procedure - if initMisc1() doesn't exist in the run file 
// Initializations performed prior to finitialize() 
// This should contain point process inits and inits for any changes 
//        made to the NEURON block of any local mod file 
proc initMisc1() { }

// Default procedure - if initMisc2() doesn't exist in the run file 
// Initializations performed after finitialize() 
proc initMisc2() { }

// Default procedure - if finishMisc() doesn't exist in the run file 
proc finishMisc() { }

/*------------------------------------------------------------
Miscellaneous routines
------------------------------------------------------------*/

proc errorMsg() {
  /* Print warning, assumes arg1 is string and arg2 if present is a
  variable value */

sectionname(section)

if (numarg() == 0) {
  printf("ERROR in errorMsg(): Needs at least 1 argument.\n")
} else if (numarg() == 1) {
  printf("ERROR: %s in section %s.\n", $s1, section)
} else {
  printf("ERROR: %s in section %s (var=%g).\n", $s1, section, $2)
}
}

proc clear() {
  /* Clear non-interviews plot window */
plt(-3)
}

func mod() { local x, y
  /* Mod function for non-integers */

x=$1
y=$2

return (x/y - int(x/y))
}

proc whatSection() { print secname() }

proc print_pp_location() { local x //arg1 must be a point process
   x = $o1.get_loc()
   sectionname(temp_string_)
   printf("%s located at %s(%g)\n", $o1, temp_string_, x)
   pop_section()
}

//* set method with method()
proc method () { local prc
  if (numarg()==0) {
    if (cvode_active() && cvode_local()) { printf("\tlocal atol=%g\n",cvode.atol)
    } else if (cvode_active()) { printf("\tglobal atol=%g\n",cvode.atol)
    } else if (secondorder==2) { printf("\tCrank-Nicholson dt=%g\n",dt)
    } else if (secondorder==0) { printf("\timplicit dt=%g\n",dt)
    } else { printf("\tMethod unrecognized\n") }
    return
  }
  if (numarg()==2) prc = $2 else prc=0
  finitialize()
  if (strcmp($s1,"global")==0) {
    cvode_active(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"local")==0) {
    cvode_local(1)
    cvode.condition_order(2)
    if (prc) cvode.atol(prc)
  } else if (strcmp($s1,"implicit")==0) {
    secondorder=0
    cvode_active(1)
    cvode_active(0)
    if (prc) dt=prc
  } else if (strcmp($s1,"CN")==0) {
    secondorder=2
    cvode_active(1) // this turns off local
    cvode_active(0)
    if (prc) dt=prc
  } else {
    printf("Integration method %s not recognized\n",$s1)
  }
}

//* Load local modifications to nrnoc.hoc and default.hoc
load_file("local.hoc")

if (xwindows && graph_flag) { nrnmainmenu() } // pwman_place(50,50)

print "Init complete.\n"

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39[PubMed]

References and models cited by this paper

References and models that cite this paper

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Ko (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686-9

Carnevale NT, Hines ML (2006) The NEURON Book

Chandler B, Grossberg S (2012) Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF. Neural Netw 25:21-9

Crumiller M, Knight B, Yu Y, Kaplan E (2011) Estimating the amount of information conveyed by a population of neurons. Front Neurosci 5:90-31 [PubMed]

Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285:12463-8

Frohlich F, Bazhenov M, Sejnowski TJ (2008) Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709-20 [PubMed]

Gourevitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97:2533-43 [PubMed]

Hansen N (2012) Action mechanisms of transcranial direct current stimulation in Alzheimer's disease and memory loss. Front Psychiatry 3:48-8

Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60 [Journal] [PubMed]

   Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012) [Model]

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [PubMed]

Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120:1161-7

Lytton WW, Neymotin SA, Kerr CC (2014) Multiscale modeling for clinical translation in neuropsychiatric disease J Comput Surg 1:7

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Modolo J, Beuter A (2009) Linking brain dynamics, neural mechanisms, and deep brain stimulation in Parkinson's disease: an integrated perspective. Med Eng Phys 31:615-23

Neymotin S, Kerr C, Francis J, Lytton W (2011) Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex Signal Processing in Medicine and Biology Symposium (SPMB), IEEE :1-6

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13:812-8 [PubMed]

Qiu S, Anderson CT, Levitt P, Shepherd GM (2011) Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci 31:5855-64

Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M (2013) Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm 120:813-9

Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20 [Journal]

   Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013) [Model]

Rutherford LC, Nelson SB, Turrigiano GG (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521-30 [PubMed]

Savioz A, Leuba G, Vallet PG, Walzer C (2009) Contribution of neural networks to Alzheimer disease's progression. Brain Res Bull 80:309-14

Shepherd GM (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14:278-91

Small DH (2008) Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103-8 [PubMed]

Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol 69:1141-8 [PubMed]

Trasande CA, Ramirez JM (2007) Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 24:154-64 [PubMed]

Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89-103 [PubMed]

Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422-35 [PubMed]

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892-6 [PubMed]

Utz KS, Dimova V, Oppenlander K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia 48:2789-810

van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21 [PubMed]

Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360-6 [Journal] [PubMed]

   Laminar connectivity matrix simulation (Weiler et al 2008) [Model]

Yu Y, Crumiller M, Knight B, Kaplan E (2010) Estimating the amount of information carried by a neuronal population. Front Comput Neurosci 4:10-810

Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW (2016) Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front. Neurosci. Neuroprosthetics 10:28 [Journal]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model Neural Computation 27(4):898-924 [Journal] [PubMed]

   Neuronal dendrite calcium wave model (Neymotin et al, 2015) [Model]

(38 refs)