Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:154096
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
Reference:
1 . Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Long-term Synaptic Plasticity; Aging/Alzheimer`s; Deep brain stimulation; Homeostasis;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; Neocortex V1 pyramidal intratelencephalic L2-5 cell; Neocortex V1 interneuron basket PV cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
RowanEtAl2014
batchscripts
mod
README
alz.hoc
alzinfo.m
autotune.hoc *
basestdp.hoc *
batch.hoc *
batch2.hoc *
batchcommon
checkirreg.hoc *
clusterrun.sh
col.dot *
col.hoc *
comppowspec.hoc *
condisconcellfig.hoc *
condisconpowfig.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
e2hubsdisconpow.hoc *
e2incconpow.hoc *
filtutils.hoc *
flexinput.hoc
geom.hoc *
graphplug.hoc *
grvec.hoc *
infot.hoc *
init.hoc *
labels.hoc *
load.hoc *
local.hoc *
makepopspikenq.hoc *
matfftpowplug.hoc *
matpmtmplug.hoc *
matpmtmsubpopplug.hoc *
matspecplug.hoc *
mosinit.hoc
network.hoc *
nload.hoc *
nqpplug.hoc *
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
plot.py
plotavg.py
plotbatch.sh
plotbatchcluster.sh
plotdeletions.py
plotntes.py
powchgtest.hoc *
pyhoc.py
python.hoc *
pywrap.hoc *
ratlfp.dat *
redE2.hoc *
run.hoc
runsim.sh
setup.hoc *
shufmua.hoc *
sim.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
vsampenplug.hoc *
writedata.hoc
xgetargs.hoc *
                            
// $Id: xgetargs.hoc,v 1.20 2008/05/11 17:19:11 billl Exp $

print "Loading xgetargs.hoc..."

xgahfl=0
{load_file("decvec.hoc")}
strdef mesg
objref xgabxl,xgabxo

//* xgetargs()
// xgetargs(panel_name,command,arg1[,arg2,...],defaults) // existing or new params -- flag 2
//   may have no named params in this case since just set with call to command
//   eg xgetargs("New","redo","do this","do that","1,2")
// xgetargs(panel_name,command,"a1,a2,..") // existing params -- flag 1
// xgetargs(panel_name,command,strlist)
// xgetargs(1,...) // dismiss after setting
// xgetargs(list,...) // list of helper functions returned by xgetclrfunc()
// eg xgetargs("Random session","newrand","# of patts","patt size  ","overlap   ","5,33,7")
// optional 1st arg flag=1 means to remove panel after command is called
// Union contains: o[0]=VBox, o[1]=argv, [o[2]=param name list] o[3]=orig update
//                 o[4]=helper functions
//                 x[0]=#args, x[1]=flag, x[2]=dismiss x[3-5] reserved for future use
//                 s=panel/button name,t=quit call,u=varlable,v=scratch
obfunc xgetargs () { local i,j,args,flag,dismiss,na localobj o,argv,vb,l,st,xo
  if (!isassigned(xgabxl)) xgabxl=new List()
  st=new String2()
  na=numarg()  
  dismiss=0 i=1 
  xgabxl.append(o=new Union())
  if (argtype(i)==0) { dismiss=$1 i+=1 }
  if (argtype(i)==1) {xo=$oi i+=1} else xo=xgetclrfunc()
  o.os(4,"funcs",xo) // list of helper functions
  o.xs(2,"dismiss",dismiss) // dismiss=1 means dismiss at end
  o.os(1,"argv",argv=new Vector(na))
  argv.resize(0)
  o.os(0,"vb",vb=new VBox())
  sprint(o.t,"xgaqt(%s)",o)
  vb.dismiss_action(o.t)
  o.s=$si i+=1 o.t=$si i+=1
  vb.intercept(1)
  xpanel(o.s)
  xvarlabel(o.u)
  sprint(o.v,"xgetexec(%s)",o)
  xbutton(o.s,o.v)
  excu("xgetbuttn",o.o[4],o)
  if (i==na) { // this should be a list of existing params
    o.xs(1,"flag",flag=1) // flag -- variables have names
    o.os(2,"plist",l=new List()) // list of param names
    if (argtype(i)==2) {
      split_interp=1
      split($si,l) // list of strings
      split($si,argv) // list of values
    } else if (argtype(i)==1) {
      for ltr(xo,$oi) {
        l.append(xo)
        argv.append(str2num(xo.s))
      }
    } else { printf("xgetargs ERRA\n") xpanel() return o=nil}
    args=argv.size
    if (args==0) { // create them
      for ltr(xo,l) {
        sprint(st.s,"%s=1",xo.s) execute(st.s)
        args=l.count argv.resize(args) argv.fill(1)
      }
    } else if (args!=l.count) {printf("xgetargs ERRB %d %d\n",args,l.count) xpanel() return o=nil}
    o.os(3,"orig",argv.c)   // save original values
    o.xs(0,"nargs",args)
    excu("xgetlabl",o.o[4],o)
    for j=0,args-1 {
      sprint(o.v,"%s.x[%d]",argv,j)
      sprint(st.s,"xgetchg(%s,%d)",o,j)
      xvalue(l.o(j).t, o.v, 1, st.s, 1)
    }
  } else {
    j=i i=na
    if (strm($si,"^[a-z]")) { // a named variable; should all be name vars
      o.xs(1,"flag",flag=3) // flag -- variables have names and routine is called with args
      split_interp=1
      split($si,argv)
      o.os(2,"plist",l=new List()) // list of param names
      split($si,l) // list of strings
    } else {
      split_interp=0
      split($si,argv)
      o.xs(1,"flag",flag=2) // flag -- variables may have no names; are just args to a function
    }
    i=j // restore i
    o.xs(0,"nargs",args=argv.size)
    if (args!=na-i) { printf("xgetargs ERRC: mismatch %d %d\n",args,na-i) xpanel() return o=nil }
    o.os(3,"orig",argv.c)   // save original values
    for j=0,args-1 {
      sprint(o.v,"%s.x[%d]",argv,j)
      sprint(st.s,"xgetchg(%s,%d)",o,j)
      xvalue($si,o.v,1,st.s,1)
      if (flag==3) l.o(j).t=$si
      i+=1
    }
  }
  o.u=o.s // start with this label
  // xbutton("Help (2 clicks)","xgah()")
  xpanel()
  vb.intercept(0)
  vb.full_request(1)
  vb.map(o.s)
  xgabxo=o // global for current xgab object
  return o
}

//* xgah() should provide help -- doesn't
proc xgah () { 
  if (xgahfl==1) {
    continue_dialog("Press help button first, then elsewhere for button-specific help")
    xgahfl=0
  } else xgahfl=1
}

//* xgetclrfunc() -- set up the callbacks as empty functions
obfunc xgetclrfunc () { local flag localobj st,xo,o
  flag=0
  if (numarg()==1) if (isobj($o1,"List")) flag=1
  if (flag) { // just clear the functions
    for ltr(xo,$o1) xo.t="" // clear
    return $o1
  } else { // create
    st=new String() o=new List()
    for scase(st,"xgetchg2","xgetexec2","xgaqt2","xgetlabl","xgetbuttn") {
      o.append(new String2(st.s)) }
    if (numarg()==1) $o1=o
    return o
  }
}

//* xgetchg() done after a value is changed
proc xgetchg () { local i localobj o
  o=$o1 i=$2
print "A",o,i,o.o[4]
  if (excu("xgetchg2",o.o[4],o,i)) return
  sprint(o.u,"Press '%s' button for effect",o.s)
}

//* xgetexec() done when the 'make changes' button is pressed
proc xgetexec () { local i,args,dismiss,flag localobj o,l,av,vb,xo
  o=$o1
  if (excu("xgetexec2",o.o[4],o)) return
  args=o.x flag=o.x[1] dismiss=o.x[2] av=o.o[1] vb=o.o
  if (flag==1 || flag==3) {
    l=o.o[2]
    if (args!=l.count || args!=av.size) {
      printf("xgetexec() ERRA %d,%d,%d\n",args,l.count,av.size) return
    }
    for ltr(xo,l,&i) {
      sprint(o.v,"%s=%g",xo.s,av.x[i])
      execute(o.v)
    }
    if (flag==1) { // call the routine -- else will call below
      if (strm(o.t,"[(]")) o.v=o.t else sprint(o.v,"%s(%s)",o.t,o) // no args passed to function
    }
  }
  if (flag==2 || flag==3) {
    sprint(o.v,"%s(",o.t)
    for i=0,args-2 sprint(o.v,"%s%g,",o.v,av.x[i])
    sprint(o.v,"%s%g)",o.v,av.x[i]) 
  }
  execute(o.v)
  o.u="Changes submitted"
  if (dismiss) { xgaqt(o) // get rid of the box
  } else { o.o[3].copy(o.o[1]) } // new set of origs
}
  
//* xgaqt() called when the panel is dismissed
proc xgaqt () { local x localobj av,vb,o
  o=$o1 
  if (excu("xgaqt2",o.o[4],o)) return
  av=o.o[1] vb=o.o
  vb.unmap()
  if ((x=xgabxl.index(o))!=-1) xgabxl.remove(x)
  if (xgabxo==o) xgabxo=nil
}

Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39[PubMed]

References and models cited by this paper

References and models that cite this paper

Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [PubMed]

Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Ko (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686-9

Carnevale NT, Hines ML (2006) The NEURON Book

Chandler B, Grossberg S (2012) Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF. Neural Netw 25:21-9

Crumiller M, Knight B, Yu Y, Kaplan E (2011) Estimating the amount of information conveyed by a population of neurons. Front Neurosci 5:90-31 [PubMed]

Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285:12463-8

Frohlich F, Bazhenov M, Sejnowski TJ (2008) Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709-20 [PubMed]

Gourevitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97:2533-43 [PubMed]

Hansen N (2012) Action mechanisms of transcranial direct current stimulation in Alzheimer's disease and memory loss. Front Psychiatry 3:48-8

Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex IEEE Transactions on Neural Systems & Rehabilitation Engineering 20(2):153-60 [Journal] [PubMed]

   Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012) [Model]

Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301-16 [PubMed]

Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120:1161-7

Lytton WW, Neymotin SA, Kerr CC (2014) Multiscale modeling for clinical translation in neuropsychiatric disease J Comput Surg 1:7

Lytton WW, Omurtag A, Neymotin SA, Hines ML (2008) Just in time connectivity for large spiking networks Neural Comput 20(11):2745-56 [Journal] [PubMed]

   JitCon: Just in time connectivity for large spiking networks (Lytton et al. 2008) [Model]

Lytton WW, Stewart M (2005) A rule-based firing model for neural networks Int J Bioelectromagn 7:47-50

Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69:1160-1164

Modolo J, Beuter A (2009) Linking brain dynamics, neural mechanisms, and deep brain stimulation in Parkinson's disease: an integrated perspective. Med Eng Phys 31:615-23

Neymotin S, Kerr C, Francis J, Lytton W (2011) Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex Signal Processing in Medicine and Biology Symposium (SPMB), IEEE :1-6

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13:812-8 [PubMed]

Qiu S, Anderson CT, Levitt P, Shepherd GM (2011) Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci 31:5855-64

Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M (2013) Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm 120:813-9

Rowan MS,Neymotin SA (2013) Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms, Tomassini M, Antonioni A, Daolio F, Buesser P, ed. pp.20 [Journal]

   Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013) [Model]

Rutherford LC, Nelson SB, Turrigiano GG (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521-30 [PubMed]

Savioz A, Leuba G, Vallet PG, Walzer C (2009) Contribution of neural networks to Alzheimer disease's progression. Brain Res Bull 80:309-14

Shepherd GM (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14:278-91

Small DH (2008) Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103-8 [PubMed]

Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol 69:1141-8 [PubMed]

Trasande CA, Ramirez JM (2007) Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 24:154-64 [PubMed]

Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89-103 [PubMed]

Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422-35 [PubMed]

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892-6 [PubMed]

Utz KS, Dimova V, Oppenlander K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia 48:2789-810

van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812-21 [PubMed]

Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360-6 [Journal] [PubMed]

   Laminar connectivity matrix simulation (Weiler et al 2008) [Model]

Yu Y, Crumiller M, Knight B, Kaplan E (2010) Estimating the amount of information carried by a neuronal population. Front Comput Neurosci 4:10-810

Dura-Bernal S, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW (2016) Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front. Neurosci. Neuroprosthetics 10:28 [Journal]

   Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015) [Model]

Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model Neural Computation 27(4):898-924 [Journal] [PubMed]

   Neuronal dendrite calcium wave model (Neymotin et al, 2015) [Model]

(38 refs)